首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
PCR-product directed gene disruption with a marker cassette having short homology regions is often used in Candida albicans. However, it is quite inefficient due to the high frequency of non-homologous recombination at non-targeted loci, which necessitates extensive screening to identify the correct disruptants. Thus, many PCR-based methods to introduce long flanking homology regions have been developed to increase the frequency of integration at the targeted loci. However, these methods are not that amenable for use with the widely employed C. albicans marker cassettes having direct repeats, as these repeats tend to recombine during PCR, resulting in shorter amplified products without the selection marker. To circumvent this limitation, we have developed a dinucleotide-sticky-end-ligation strategy to add one flanking homology region to one side of the selection cassette, and the other flanking homology region to the other side of the selection cassette. This method involves release of the selection cassette from the plasmid by digestion with two different restriction enzymes, followed by partial fill-in, to provide a unique two base overhang at each end of the cassette. The flanking homology regions, corresponding to the gene to be disrupted, are individually PCR-amplified, and treated with T4-DNA Polymerase in the presence of appropriate dNTPs to yield two base-5' overhangs. The primers used for the PCR have additional bases at the 5' ends such that after T4 DNA Polymerase treatment, the two flanks will have distinct overhangs compatible with the overhangs of the partially filled-in selection cassette. The selection cassette and the flanks are then ligated together and directly used to transform C. albicans. We have successfully used this method for disruption of several C. albicans genes. We have also used this method to recreate insertion mutations obtained with transposons to reconfirm the mutant phenotypes. This approach can be extended to other organisms like Schizosaccharomyces pombe which also require long flanking regions of homology for targeted gene disruption.  相似文献   

2.
Artificial gene alteration by homologous recombination in living cells, termed gene targeting, presents fundamental and considerable knowledge of in vivo gene function. In principle, this method can possibly be applied to any type of genes and transformable cells. However, its success is limited due to a low frequency of homologous recombination between endogenous targeted gene and exogenous transgene. Here, we describe a general gene-targeting method in which co-transformation of DNA oligonucleotides (oligomers) could significantly increase the homologous recombination frequency and transformation efficiency. The oligomers were simply designed such that they were identical to both the ends of the homologous flanking regions of the targeting construct. Using this strategy, both targeted alleles of diploid cells were simultaneously replaced in a single transformation procedure. Thus, the simplicity and versatility of this method applicable to any type of cell may increase the application of gene targeting.  相似文献   

3.
Pichia pastoris has been used for the production of many recombinant proteins, and many useful mutant strains have been created. However, the efficiency of mutant isolation by gene‐targeting is usually low and the procedure is difficult for those inexperienced in yeast genetics. In order to overcome these issues, we developed a new gene‐disruption system with a rescue gene using an inducible Cre/mutant–loxP system. With only short homology regions, the gene‐disruption cassette of the system replaces its target–gene locus containing a mutation with a compensatory rescue gene. As the cassette contains the AOX1 promoter‐driven Cre gene, when targeted strains are grown on media containing methanol, the DNA fragment, i.e., the marker, rescue and Cre genes, between the mutant‐loxP sequences in the cassette is excised, leaving only the remaining mutant‐loxP sequence in the genome, and consequently a target gene‐disrupted mutant can be isolated. The system was initially validated on ADE2 gene disruption, where the disruption can easily be detected by color‐change of the colonies. Then, the system was applied for knocking‐out URA3 and OCH1 genes, reported to be difficult to accomplish by conventional gene‐targeting methods. All three gene‐disruption cassettes with their rescue genes replaced their target genes, and the Cre/mutant–loxP system worked well to successfully isolate their knock‐out mutants. This study identified a new gene‐disruption system that could be used to effectively and strategically knock out genes of interest, especially whose deletion is detrimental to growth, without using special strains, e.g., deficient in nonhomologous end‐joining, in P. pastoris. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1201–1208, 2017  相似文献   

4.
Kluyveromyces lactis strains impaired in the nonhomologous end-joining pathway are relevant tools for the homologous integration of exogenous DNA into the genome, as in the mutant strains, close to 100% of the integrants are targeted to the homologous locus, compared with a few per cent for the wild-type recipient. Using a loxP-kanMX-loxP cassette together with a Cre-recombinase plasmid, a nej1∷loxP mutant strain suitable for multiple gene disruption has been constructed. Furthermore, using this strain, PCR-generated constructs with only 50 bp of homologous flanking sequences resulted in efficient exogenous DNA targeting.  相似文献   

5.
To determine if DNA configuration, gene locus, and flanking sequences will affect homologous recombination in the phytopathogenic fungus Cercospora nicotianae, we evaluated and compared disruption efficiency targeting four cercosporin toxin biosynthetic genes encoding a polyketide synthase (CTB1), a monooxygenase/O-methyltransferase (CTB3), a NADPH-dependent oxidoreductase (CTB5), and a FAD/FMN-dependent oxidoreductase (CTB7). Transformation of C. nicotianae using a circular plasmid resulted in low disruption frequency. The use of endonucleases or a selectable marker DNA fragment flanked by homologous sequence either at one end or at both ends in the transformation procedures, increased disruption efficiency in some but not all CTB genes. A split-marker approach, using two DNA fragments overlapping within the selectable marker, increased the frequency of targeted gene disruption and homologous integration as high as 50%, depending on the target gene and on the length of homologous DNA sequence flanking the selectable marker. The results indicate that the split-marker approach favorably decreased ectopic integration and thus, greatly facilitated targeted gene disruption in this important fungal pathogen. The GenBank/EMBL/DDBJ accession numbers for the sequence data reported in this article are: CTB1, AY649543, CTB3, DQ355149, CTB5, DQ991507, and CTB7, DQ991509.  相似文献   

6.
We report the targeted mutagenesis of the murine iron regulatory protein (IRP)-1 and IRP2 genes, respectively, with a classical gene trap construct. Insertion of the targeting cassette into the second intron of either gene by homologous recombination interrupts their open reading frames near the N termini. Mice that are homozygous for the correctly modified IRP1 or IRP2 alleles, respectively, display a strong reduction (90%, IRP1(-/-)) or nondetectable levels (IRP2(-/-)) of the targeted proteins. Interestingly, the pre-mRNAs transcribed from the identical targeting cassettes are processed differently within the two different contexts. Detailed analysis of the respective products identifies the choice of alternative splice and 3' end processing sites in the same tissues in vivo. We discuss the implications for the understanding of RNA processing and for targeting strategies for functional genomics in the mouse.  相似文献   

7.
Gene trapping is a high-throughput insertional mutagenesis approach that has been primarily used in mouse embryonic stem cells (ESCs). As a high throughput technology, gene trapping helped to generate tenth of thousands of ESC lines harboring mutations in single genes that can be used for making knock-out mice. Ongoing international efforts operating under the umbrella of the International Knockout Mouse Consortium (IKMC; www.knockoutmouse.org) aim to generate conditional alleles for every protein coding gene in the mouse genome by high throughput conditional gene targeting and trapping. Here, we provide protocols for gene trapping in ESCs that can be easily adapted to any other mammalian cell. We further provide protocols for handling and verifying conditional gene trap alleles in ESC lines obtained from the IKMC repositories and describe a highly efficient method for the postinsertional modification of gene trap alleles. More specifically, we describe a protein tagging strategy based on recombinase mediated cassette exchange (RMCE) that enables protein localization and protein-protein interaction studies under physiological conditions.  相似文献   

8.
Since the invention of the PCR technology, adaptation techniques to clone DNA fragments flanking the known sequence continue to be developed. We describe a perfectly annealed cassette available in almost unlimited quantities with variable sticky-and blunt-end restriction enzyme recognition sites for efficient restriction and ligation with the restricted target genomic DNA. The cassette provides a 200-bp sequence, which is used to design a variety of cassette-specific primers. The dephosphorylation prevents cassette self-ligation and creates a nick at the cassette: target genome DNA ligation site suppressing unspecific PCR amplifications. We introduce the single-strand amplification PCR (SSA-PCR) technique where a lone known locus-specific primer is firstly used to enrich the targeted template DNA strand resulting in significant PCR product specificity during the second round conventional nested PCR. The distance between the known locus-specific primer and the nearest location of the restriction enzyme used determined the length of the obtained PCR product. We used this technique to walk downstream into the isochorismatase and upstream into the hypothetical conserved genes flanking the mature extracellular lipase gene from Bacillus licheniformis. We further demonstrated the potential of the technique as a cost-effective method during PCR-based prospecting for novel genes by designing "universal" degenerate primers that detected homologues of Family VII bacterial lipolytic genes in Bacillus species. The cassette ligation-mediated PCR was used to clone complete nucleotide sequences encoding functional lipolytic genes from B. licheniformis and Bacillus pumilus.  相似文献   

9.
Recycling selectable markers in mouse embryonic stem cells.   总被引:7,自引:2,他引:5       下载免费PDF全文
As a result of gene targeting, selectable markers are usually permanently introduced into the mammalian genome. Multiple gene targeting events in the same cell line can therefore exhaust the pool of markers available and limit subsequent manipulations or genetic analysis. In this study, we describe the combined use of homologous and CRE-loxP-mediated recombination to generate mouse embryonic stem cell lines carrying up to four targeted mutations and devoid of exogenous selectable markers. A cassette that contains both positive and negative selectable markers flanked by loxP sites, rendering it excisable by the CRE protein, was constructed. Homologous recombination and positive selection were used to disrupt the Rep-3 locus, a gene homologous to members of the mutS family of DNA mismatch repair genes. CRE-loxP-mediated recombination and negative selection were then used to recover clones in which the cassette had been excised. The remaining allele of Rep-3 was then subjected to a second round of targeting and excision with the same construct to generate homozygous, marker-free cell lines. Subsequently, both alleles of mMsh2, another mutS homolog, were disrupted in the same fashion to obtain cell lines homozygous for targeted mutations at both the Rep-3 and mMsh2 loci and devoid of selectable markers. Thus, embryonic stem cell lines obtained in this fashion are suitable for further manipulation and analysis involving the use of selectable markers.  相似文献   

10.
11.
Deleteagene(trade mark) (Delete-a-gene) is a deletion-based gene knockout system for plants. To obtain deletion mutants for a specific gene, random deletion libraries created by fast neutron mutagenesis are screened by polymerase chain reaction (PCR) using primers flanking the target gene. By adjusting the PCR extension time to preferentially amplify the deletion alleles, deletion mutants can be identified in pools of DNA samples with each sample representing more than a thousand mutant lines. In Arabidopsis, knockout plants for greater than 80% of targeted genes have been obtained from a population of 51 840 lines. A large number of deletion mutants have been identified and multiple deletion alleles are often recovered for targeted loci. In Arabidopsis, the method is very useful for targeting small genes and can be used to find deletion mutants mutating two or three tandem homologous genes. In addition, the method is demonstrated to be effective in rice as a deletion mutant for a rice gene was obtained with a similar approach. Because fast neutron mutagenesis is applicable to all plant genetic systems, Deleteagene(trade mark) has the potential to enable reverse genetics for a wide range of plant species.  相似文献   

12.
构建一株酿酒酵母SNF4基因缺失菌株并研究其对乙醇产量的影响。扩增带有SNF4基因上下游同源序列和Kanr筛选标记的SNF4基因敲除组件,转化到酿酒酵母YS2获得阳性克隆子,然后将质粒pSH65转到阳性克隆子中,半乳糖诱导pSH65表达Cre酶切除Kanr筛选标记,获得SNF4等位基因完全缺失菌株YS2-△SNF4。发酵实验结果表明,缺失菌株YS2-△SNF4乙醇产量较出发菌株提高了7.57%。利用Cre-LoxP系统,成功构建了SNF4等位基因完全缺失菌株并提高乙醇产生量。  相似文献   

13.
Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.  相似文献   

14.
The yeast DEL assay measures the frequency of intrachromosomal recombination between two partially-deleted his3 alleles on chromosome XV. The his3Delta alleles share approximately 400bp of overlapping homology, and are separated by an intervening LEU2 sequence. Homologous recombination between the his3Delta alleles results in deletion of the intervening LEU2 sequence (DEL), and reversion to histidine prototrophy. In this study we have attempted to further extend the use of the yeast DEL assay to measure the frequency of chromosome XV gain events. Reversion to His(+)Leu(+) in the haploid yeast DEL tester strain RSY6 occurs upon non-disjunction of chromosome XV sister chromatids, coupled with a subsequent DEL event. Here we have tested the ability of the yeast DEL assay to accurately predict the aneugenic potential of the diversely-acting, known or suspected aneugens actinomycin D, benomyl, chloral hydrate, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and methotrexate. Actinomycin D and benomyl strongly induced aneuploidy. EMS and methotrexate modestly induced aneuploidy, while chloral hydrate and MMS failed to illicit any significant induction. In addition, by FACS-analysis of DNA content it was shown that the majority of both spontaneous- and chemically-induced His(+)Leu(+) revertants were heterodiploid. Thus, our results indicate endoreduplication of almost entire chromosome sets as a major mechanism of aneuploidy induction in haploid Saccharomyces cerevisiae.  相似文献   

15.
Gene targeting in mouse embryonic stem (ES) cells generally includes the analysis of numerous colonies to identify a few with mutations resulting from homologous recombination with a targeting vector. Thus, simple and efficient screening methods are needed to identify targeted clones. Optimal screening approaches require probes from outside of the region included in the targeting vector to avoid detection of the more common random insertions. However, the use of large genomic fragments in targeting vectors can limit the availability of cloned DNA, thus necessitating a strategy to obtain unique flanking sequences. We describe a rapid method to identify sequences adjacent to cloned DNA using long-range polymerase chain reaction (PCR) amplification from a genomic DNA library, followed by direct nucleotide sequencing of the amplified fragment. We have used this technique in two independent gene targeting experiments to obtain genomic DNA sequences flanking the mouse cholecystokinin (CCK) and gastrin genes. The sequences were then used to design primers to characterize ES cell lines with CCK or gastrin targeted gene mutations, employing a second long-range PCR approach. Our results show that these two long-range PCR methods are generally useful to rapidly and accurately characterize allele structures in ES cells  相似文献   

16.
17.
Aspergillus oryzae has numerous protease genes that might cause proteolytic degradation of heterologously-produced proteins. The productivity of the heterologous protein can be improved by protease gene disruption, but it is difficult to select disruption targets efficiently. In this study, we monitored the expression of 132 protease genes by DNA microarray. A group of protease genes up-regulated during cultivation was identified by clustering analysis. In this protease group, the nptB gene encoding neutral protease II was included as well as the alpA, tppA, and pepA genes, disruption of which has improved human lysozyme (HLY) production. The nptB gene was disrupted to investigate its involvement in HLY production, and nptB disruptants showed an improvement in the production. These observations suggest that monitoring the expression of protease genes is an efficient strategy in screening potential disruption targets for heterologous protein production in A. oryzae.  相似文献   

18.
Gene traps can be used to monitor faithfully the changes in gene expression accompanying several cellular processes. Here, we present a strategy that combines retroviral gene trap vectors, efficient selection schemes based on fluorescence-activated cell sorting or dominant positive and negative drug selection, and appropriately responsive cell lines in order to enrich for retroviral insertions into regulated genes (i.e., genes participating in cellular differentiation processes and genes induced by growth factors, drugs, or neurotransmitters, etc.). As an example, we applied this approach to the identification of insertions into genes activated by a MyoD protein, using a MyoD-responsive fibroblast line. In a single experiment designed to demonstrate the feasibility of this approach, we have been able to screen thousands of gene trap integrations and to select those that represent direct or indirect targets of MyoD. Distinct patterns of regulation were observed during myogenic determination. Sequences flanking the integrations can be rescued with several approaches, and they can be used to isolate the host genes or can serve as entry points for genome-wide sequencing projects.  相似文献   

19.
Repair of DNA damage resulting in double-strand breaks (DSBs) is controlled by gene products executing homologous recombination or end-joining pathways. The MRE11 gene has previously been implicated in DSB repair in the yeast Saccharomyces cerevisiae . Here we have developed a methodology to study the roles of the murine Mre11 homolog in pluripotent embryonic stem cells. Using a gene targeting approach, a triple LoxP site cassette was inserted into a region of MRE11 genomic DNA flanking conserved phosphodiesterase motifs. The addition of Cre recombinase activity promotes deletions of three types that can be scored. We find that deletion at phosphodiesterase motif III encoded in the N-terminus of Mre11 is acheived in the presence of a wild-type MRE11 allele. However, when the wild-type MRE11 allele is inactivated by gene targeted insertion of a neo marker, only Cre recombination events that allow expression of wild-type Mre11 protein are observed. Therefore, Mre11 is required for normal cell proliferation. This methodology introduces a means to study important regions of essential genes in cell culture models.  相似文献   

20.
Transformants of Fusarium graminearum were derived using linearized DNA of plasmids designed to replace the trichodiene synthase gene, a cutinase gene or a xylanase gene with a hygromycin-resistance marker cassette by homologous recombination between 1-kbp segments of flanking DNA. Most transformants did not exhibit the DNA structure expected of integration by classical double recombination. Instead, they contained linearized plasmid joined end-to-end and variably incorporated into the genome. Transformant types included ectopic integrations and integrations at the target site with or without removal of the targeted gene. We have analyzed a large number of transformants using cloning, PCR and DNA sequencing to determine the structures of their integrated DNA, and describe a model to explain their derivations. The data indicate that 1-3 copies of input DNA are first joined end-to-end to produce either linear or circular structures, probably mediated by the non-homologous end-joining (NHEJ) system. The end-joins typically have 1-5 nucleotides in common and are near or within the original cleavage site of the plasmid. Ectopic integrations occur by attaching linear DNA to two ends of genomic DNA via the same joining mechanism. Integration at the target site is consistent with replication around circularized input DNA, beginning and ending within the flanking homologous DNA, resulting in the integration of multiple copies of the entire structure. This results in deletion or duplication of the target site, or leaves one copy at either end of the integrated multimer. Reiterated DNA in the more complex structures is unstable due to homologous recombination, such that conversion to simpler forms is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号