首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular Ca2+ sensor calmodulin (CaM) regulates the cardiac Ca2+ release channel/ryanodine receptor 2 (RyR2), and mutations in CaM cause arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT) and long QT syndrome. Here, we investigated the effect of CaM mutations causing CPVT (N53I), long QT syndrome (D95V and D129G), or both (CaM N97S) on RyR2-mediated Ca2+ release. All mutations increased Ca2+ release and rendered RyR2 more susceptible to store overload-induced Ca2+ release (SOICR) by lowering the threshold of store Ca2+ content at which SOICR occurred and the threshold at which SOICR terminated. To obtain mechanistic insights, we investigated the Ca2+ binding of the N- and C-terminal domains (N- and C-domain) of CaM in the presence of a peptide corresponding to the CaM-binding domain of RyR2. The N53I mutation decreased the affinity of Ca2+ binding to the N-domain of CaM, relative to CaM WT, but did not affect the C-domain. Conversely, mutations N97S, D95V, and D129G had little or no effect on Ca2+ binding to the N-domain but markedly decreased the affinity of the C-domain for Ca2+. These results suggest that mutations D95V, N97S, and D129G alter the interaction between CaM and the CaMBD and thus RyR2 regulation. Because the N53I mutation minimally affected Ca2+ binding to the C-domain, it must cause aberrant regulation via a different mechanism. These results support aberrant RyR2 regulation as the disease mechanism for CPVT associated with CaM mutations and shows that CaM mutations not associated with CPVT can also affect RyR2. A model for the CaM-RyR2 interaction, where the Ca2+-saturated C-domain is constitutively bound to RyR2 and the N-domain senses increases in Ca2+ concentration, is proposed.  相似文献   

2.
The NH2-terminal region (residues 1–543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca2+ release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca2+ release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca2+-induced Ca2+ release and store overload-induced Ca2+ release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca2+ release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca2+ activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca2+ activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca2+ activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.  相似文献   

3.
Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release (SOICR) in human embryonic kidney 293 (HEK293) cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype (WT) channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.  相似文献   

4.
The N-terminal domain of the cardiac ryanodine receptor (RyR2) harbors a large number of naturally occurring mutations that are associated with stress-induced ventricular tachyarrhythmia and sudden death. Nearly all these disease-associated N-terminal mutations are located at domain interfaces or buried within domains. Mutations at these locations would alter domain-domain interactions or the stability/folding of domains. Recently, a novel RyR2 mutation H29D associated with ventricular arrhythmia at rest was found to enhance the activation of single RyR2 channels by diastolic levels of cytosolic Ca2+. Unlike other N-terminal disease-associated mutations, the H29D mutation is located on the surface of the N-terminal domain. It is unclear how this surface-exposed H29D mutation that does not appear to interact with other parts of the RyR2 structure could alter the intrinsic properties of the channel. Here we carried out detailed functional characterization of the RyR2-H29D mutant at the molecular and cellular levels. We found that the H29D mutation has no effect on the basal level or the Ca2+ dependent activation of [3H]ryanodine binding to RyR2, the cytosolic Ca2+ activation of single RyR2 channels, or the cytosolic Ca2+- or caffeine-induced Ca2+ release in HEK293 cells. In addition, the H29D mutation does not alter the propensity for spontaneous Ca2+ release or the thresholds for Ca2+ release activation or termination. Furthermore, the H29D mutation does not have significant impact on the thermal stability of the N-terminal region (residues 1–547) of RyR2. Collectively, our data show that the H29D mutation exerts little or no effect on the function of RyR2 or on the folding stability of the N-terminal region. Thus, our results provide no evidence that the H29D mutation enhances the cytosolic Ca2+ activation of RyR2.  相似文献   

5.
A number of RyR2 (cardiac ryanodine receptor) mutations linked to ventricular arrhythmia and sudden death are located within the last C-terminal approximately 500 amino acid residues, which is believed to constitute the ion-conducting pore and gating domain of the channel. We have previously shown that mutations located near the C-terminal end of the predicted TM (transmembrane) segment 10, the inner pore helix, can either increase or decrease the propensity for SOICR (store-overload-induced Ca2+ release), also known as spontaneous Ca2+ release. In the present study, we have characterized an RyR2 mutation, V4653F, located in the loop between the predicted TM 6 and TM 7a, using an ER (endoplasmic reticulum)-targeted Ca2+-indicator protein (D1ER). We directly demonstrated that SOICR occurs at a reduced luminal Ca2+ threshold in HEK-293 cells (human embryonic kidney cells) expressing the V4653F mutant as compared with cells expressing the RyR2 wild-type. Single-channel analyses revealed that the V4653F mutation increased the sensitivity of RyR2 to activation by luminal Ca2+. In contrast with previous reports, the V4653 mutation did not alter FKBP12.6 (FK506-binding protein 12.6 kDa; F506 is an immunosuppressant macrolide)-RyR2 interaction. Luminal Ca2+ measurements also showed that the mutations R176Q/T2504M, S2246L and Q4201R, located in different regions of the channel, reduced the threshold for SOICR, whereas the A4860G mutation, located within the inner pore helix, increased the SOICR threshold. We conclude that the cytosolic loop between TM 6 and TM 7a plays an important role in determining the SOICR threshold and that the alteration of the threshold for SOICR is a common mechanism for RyR2-associated ventricular arrhythmia.  相似文献   

6.
Naturally occurring mutations in the skeletal muscle Ca(2+) release channel/ryanodine receptor RyR1 are linked to malignant hyperthermia (MH), a life-threatening complication of general anesthesia. Although it has long been recognized that MH results from uncontrolled or spontaneous Ca(2+) release from the sarcoplasmic reticulum, how MH RyR1 mutations render the sarcoplasmic reticulum susceptible to volatile anesthetic-induced spontaneous Ca(2+) release is unclear. Here we investigated the impact of the porcine MH mutation, R615C, the human equivalent of which also causes MH, on the intrinsic properties of the RyR1 channel and the propensity for spontaneous Ca(2+) release during store Ca(2+) overload, a process we refer to as store overload-induced Ca(2+) release (SOICR). Single channel analyses revealed that the R615C mutation markedly enhanced the luminal Ca(2+) activation of RyR1. Moreover, HEK293 cells expressing the R615C mutant displayed a reduced threshold for SOICR compared with cells expressing wild type RyR1. Furthermore, the MH-triggering agent, halothane, potentiated the response of RyR1 to luminal Ca(2+) and SOICR. Conversely, dantrolene, an effective treatment for MH, suppressed SOICR in HEK293 cells expressing the R615C mutant, but not in cells expressing an RyR2 mutant. These data suggest that the R615C mutation confers MH susceptibility by reducing the threshold for luminal Ca(2+) activation and SOICR, whereas volatile anesthetics trigger MH by further reducing the threshold, and dantrolene suppresses MH by increasing the SOICR threshold. Together, our data support a view in which altered luminal Ca(2+) regulation of RyR1 represents a primary causal mechanism of MH.  相似文献   

7.
The ryanodine receptors form the calcium release channel in the membrane of the sarcoplasmic reticulum (SR, the main intracellular Ca2+ store). The importance of ryanodine receptors (RyRs) to cardiac pacemaking and rhythmicity is highlighted by more than 69 mutations, RyR mutations, which underlie arrhythmias and sudden cardiac death. Although most of these mutations lie in cytoplasmic domains, they all cause increased RyR activation by Ca2+ in the SR lumen. Presented here is a review of the mechanisms by which cytoplasmic domains of the RyR can determine luminal activation.  相似文献   

8.
In addition to its well established function in activating Ca2+ release from the endoplasmic reticulum (ER) through ryanodine receptors (RyR), the second messenger cyclic ADP-ribose (cADPR) also accelerates the activity of SERCA pumps, which sequester Ca2+ into the ER. Here, we demonstrate a potential physiological role for cADPR in modulating cellular Ca2+ signals via changes in ER Ca2+ store content, by imaging Ca2+ liberation through inositol trisphosphate receptors (IP3R) in Xenopus oocytes, which lack RyR. Oocytes were injected with the non-metabolizable analog 3-deaza-cADPR, and cytosolic [Ca2+] was transiently elevated by applying voltage-clamp pulses to induce Ca2+ influx through expressed plasmalemmal nicotinic channels. We observed a subsequent potentiation of global Ca2+ signals evoked by strong photorelease of IP3, and increased numbers of local Ca2+ puffs evoked by weaker photorelease. These effects were not evident with cADPR alone or following cytosolic Ca2+ elevation alone, indicating that they did not arise through direct actions of cADPR or Ca2+ on the IP3R, but likely resulted from enhanced ER store filling. Moreover, the appearance of a new population of puffs with longer latencies, prolonged durations, and attenuated amplitudes suggests that luminal ER Ca2+ may modulate IP3R function, in addition to simply determining the size of the available store and the electrochemical driving force for release.  相似文献   

9.
The phosphorylation of the cardiac Ca(2+)-release channel (ryanodine receptor, RyR2) by protein kinase A (PKA) has been extensively characterized, but its functional consequence remains poorly defined and controversial. We have previously shown that RyR2 is phosphorylated by PKA at two major sites, serine 2,030 and serine 2,808, of which Ser-2,030 is the major PKA site responding to beta-adrenergic stimulation. Here we investigated the effect of the phosphorylation of RyR2 by PKA on the properties of single channels and on spontaneous Ca(2+) release during sarcoplasmic reticulum Ca(2+) overload, a process we have referred to as store overload-induced Ca(2+) release (SOICR). We found that PKA activated single RyR2 channels in the presence, but not in the absence, of luminal Ca(2+). On the other hand, PKA had no marked effect on the sensitivity of the RyR2 channel to activation by cytosolic Ca(2+). Importantly, the S2030A mutation, but not mutations of Ser-2,808, diminished the effect of PKA on RyR2. Furthermore, a phosphomimetic mutation, S2030D, potentiated the response of RyR2 to luminal Ca(2+) and enhanced the propensity for SOICR in HEK293 cells. In intact rat ventricular myocytes, the activation of PKA by isoproterenol reduced the amplitude and increased the frequency of SOICR. Confocal line-scanning fluorescence microscopy further revealed that the activation of PKA by isoproterenol increased the rate of Ca(2+) release and the propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). Collectively, our data indicate that PKA-dependent phosphorylation enhances the response of RyR2 to luminal Ca(2+) and reduces the threshold for SOICR and that this effect of PKA is largely mediated by phosphorylation at Ser-2,030.  相似文献   

10.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

11.
Wenjun Zheng  Han Wen 《Proteins》2020,88(11):1528-1539
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+-activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+-modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+, Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+.  相似文献   

12.
13.
Ryanodine receptor type 1 (RyR1) releases Ca2+ ions from the sarcoplasmic reticulum of skeletal muscle cells to initiate muscle contraction. Multiple endogenous and exogenous effectors regulate RyR1, such as ATP, Ca2+, caffeine (Caf), and ryanodine. Cryo-EM identified binding sites for the three coactivators Ca2+, ATP, and Caf. However, the mechanism of coregulation and synergy between these activators remains to be determined. Here, we used [3H]ryanodine ligand-binding assays and molecular dynamics simulations to test the hypothesis that both the ATP- and Caf-binding sites communicate with the Ca2+-binding site to sensitize RyR1 to Ca2+. We report that either phosphomethylphosphonic acid adenylate ester (AMPPCP), a nonhydrolyzable ATP analog, or Caf can activate RyR1 in the absence or the presence of Ca2+. However, enhanced RyR1 activation occurred in the presence of Ca2+, AMPPCP, and Caf. In the absence of Ca2+, Na+ inhibited [3H]ryanodine binding without impairing RyR1 activation by AMPPCP and Caf. Computational analysis suggested that Ca2+-, ATP-, and Caf-binding sites modulate RyR1 protein stability through interactions with the carboxyterminal domain and other domains in the activation core. In the presence of ATP and Caf but the absence of Ca2+, Na+ is predicted to inhibit RyR1 by interacting with the Ca2+-binding site. Our data suggested that ATP and Caf binding affected the conformation of the Ca2+-binding site, and conversely, Ca2+ binding affected the conformation of the ATP- and Caf-binding sites. We conclude that Ca2+, ATP, and Caf regulate RyR1 through a network of allosteric interactions involving the Ca2+-, ATP-, and Caf-binding sites.  相似文献   

14.
《Cell calcium》2010,47(5-6):313-322
In vascular smooth muscle cells, Ca2+ release via IP3 receptors (IP3R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) Ca2+ store contributes significantly to the regulation of cellular events such as gene regulation, growth and contraction. Ca2+ release from various regions of a structurally compartmentalized SR, it is proposed, may selectively activate different cellular functions. Multiple SR compartments with various receptor arrangements are proposed also to exist at different stages of smooth muscle development and in proliferative vascular diseases such as atherosclerosis. The conclusions on SR organization have been derived largely from the outcome of functional studies. This study addresses whether the SR Ca2+ store is a single continuous interconnected network or multiple separate Ca2+ pools in single vascular myocytes. To do this, the consequences of depletion of the SR in small restricted regions on the Ca2+ available throughout the store was examined using localized photolysis of caged-IP3 and focal application of ryanodine in guinea-pig voltage-clamped single portal vein myocytes. From one small site on the cell, the entire SR could be depleted via either RyR or IP3R. The entire SR could also be refilled from one small site on the cell. The results suggest a single luminally continuous SR exists. However, the opening of IP3R and RyR was regulated by the Ca2+ concentration within the SR (luminal [Ca2+]). As the luminal [Ca2+] declines, the opening of the receptors decline and stop, and there may appear to be stores with either only RyR or only IP3R. The SR Ca2+ store is a single luminally continuous entity which contains both IP3R and RyR and within which Ca2+ is accessed freely by each receptor. While the SR is a single continuous entity, regulation of IP3R and RyR by luminal [Ca2+] explains the appearance of multiple stores in some functional studies.  相似文献   

15.
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle characterized by muscle contracture and life-threatening hypermetabolic crisis following exposure to halogenated anesthetics and depolarizing muscle relaxants during surgery. Susceptibility to MH results from mutations in Ca2+ channel proteins that mediate excitation–contraction (EC) coupling, with the ryanodine receptor Ca2+ release channel (RyR1) representing the major locus. Here we review recent studies characterizing the effects of MH mutations on the sensitivity of the RyR1 to drugs and endogenous channel effectors including Ca2+ and calmodulin. In addition, we present a working model that incorporates these effects of MH mutations on the isolated RyR1 with their effects on the physiologic mechanism that activates Ca2+ release during EC coupling in intact muscle.  相似文献   

16.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

17.
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins.  相似文献   

18.
19.
The clustering of cardiac RyR mutations, linked to sudden cardiac death (SCD), into several regions in the amino acid sequence underlies the hypothesis that these mutations interfere with stabilising interactions between different domains of the RyR2. SCD mutations cause increased channel sensitivity to cytoplasmic and luminal Ca2+. A synthetic peptide corresponding to part of the central domain (DPc10:2460G–P2495) was designed to destabilise the interaction of the N-terminal and central domains of wild-type RyR2 and mimic the effects of SCD mutations. With Ca2+ as the sole regulating ion, DPc10 caused increased channel activity which could be reversed by removal of the peptide whereas in the presence of ATP DPc10 caused no activation. In support of the domain destablising hypothesis, the corresponding peptide (DPc10-mut) containing the CPVT mutation R2474S did not affect channel activity under any circumstances. DPc10-induced activation was due to a small increase in RyR2 sensitivity to cytoplasmic Ca2+ and a large increase in the magnitude of luminal Ca2+ activation. The increase in the luminal Ca2+ response appeared reliant on the luminal-to-cytoplasmic Ca2+ flux in the channel, indicating that luminal Ca2+ was activating the RyR2 via its cytoplasmic Ca2+ sites. DPc10 had no significant effect on the RyR2 gating associated with luminal Ca2+ sensing sites. The results were fitted by the luminal-triggered Ca2+ feed-through model and the effects of DPc10 were explained entirely by perturbations in cytoplasmic Ca2+-activation mechanism.  相似文献   

20.
GCAP1, a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca2+-sensitive activation of retinal guanylyl cyclase 1 (RetGC1). We present NMR resonance assignments, residual dipolar coupling data, functional analysis, and a structural model of GCAP1 mutant (GCAP1V77E) in the Ca2+-free/Mg2+-bound state. NMR chemical shifts and residual dipolar coupling data reveal Ca2+-dependent differences for residues 170–174. An NMR-derived model of GCAP1V77E contains Mg2+ bound at EF2 and looks similar to Ca2+ saturated GCAP1 (root mean square deviations = 2.0 Å). Ca2+-dependent structural differences occur in the fourth EF-hand (EF4) and adjacent helical region (residues 164–174 called the Ca2+ switch helix). Ca2+-induced shortening of the Ca2+ switch helix changes solvent accessibility of Thr-171 and Leu-174 that affects the domain interface. Although the Ca2+ switch helix is not part of the RetGC1 binding site, insertion of an extra Gly residue between Ser-173 and Leu-174 as well as deletion of Arg-172, Ser-173, or Leu-174 all caused a decrease in Ca2+ binding affinity and abolished RetGC1 activation. We conclude that Ca2+-dependent conformational changes in the Ca2+ switch helix are important for activating RetGC1 and provide further support for a Ca2+-myristoyl tug mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号