首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Antibody (Ab)-dependent cellular cytotoxicity (ADCC) is thought to potentially play a role in vaccine-induced protection from HIV-1. The characteristics of such antibodies remain incompletely understood. Furthermore, correlates between ADCC and HIV-1 immune status are not clearly defined. We screened the sera of 20 HIV-1-positive (HIV-1(+)) patients for ADCC. Normal human peripheral blood mononuclear cells were used to derive HIV-infected CD4(+) T cell targets and autologous, freshly isolated, natural killer (NK) cells in a novel assay that measures granzyme B (GrB) and HIV-1-infected CD4(+) T cell elimination (ICE) by flow cytometry. We observed that complex sera mediated greater levels of ADCC than anti-HIV-1 envelope glycoprotein (Env)-specific monoclonal antibodies and serum-mediated ADCC correlated with the amount of IgG and IgG1 bound to HIV-1-infected CD4(+) T cells. No correlation between ADCC and viral load, CD4(+) T cell count, or neutralization of HIV-1(SF162) or other primary viral isolates was detected. Sera pooled from clade B HIV-1(+) individuals exhibited breadth in killing targets infected with HIV-1 from clades A/E, B, and C. Taken together, these data suggest that the total amount of IgG bound to an HIV-1-infected cell is an important determinant of ADCC and that polyvalent antigen-specific Abs are required for a robust ADCC response. In addition, Abs elicited by a vaccine formulated with immunogens from a single clade may generate a protective ADCC response in vivo against a variety of HIV-1 species. Increased understanding of the parameters that dictate ADCC against HIV-1-infected cells will inform efforts to stimulate ADCC activity and improve its potency in vaccinees.  相似文献   

2.
HIV is not usually transmitted by saliva from HIV-1-infected individuals. Antiviral substances in saliva responsible for this may include HIV-1-specific antibody-dependent cell-mediated cytotoxicity (ADCC). We evaluated saliva ADCC titers of 62 HIV-1-infected women from the Women's Interagency HIV Study (WIHS) and 55 uninfected individuals. HIV-1-infected women were less likely to have ADCC activity in saliva than in serum or cervical lavage fluid (CVL). 24% of HIV-1-positive women and a similar percentage of uninfected women had HIV-1-specific saliva ADCC activity. A significant amount of saliva ADCC activity in infected women was HIV-gp120-specific. These studies demonstrate that HIV-specific ADCC activity can be present in saliva. This activity may contribute to host defence against initial infection with HIV.  相似文献   

3.
Human cell lines were infected with different strains of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) as well as with a simian immunodeficiency virus SIVmac isolate and used as targets in an antibody-dependent cellular cytotoxicity (ADCC) assay. Sera from HIV-1- or HIV-2-infected subjects provided the antibody, and lymphocytes from normal donors provided the effector cells. About 60% of HIV-1 antibody-positive sera mediated ADCC when tested against any given HIV-1 isolate-infected target cell (human T-cell lymphotropic virus type IIIB, B40, A2587), and about 75% of HIV-2 antibody-positive sera mediated ADCC when tested against target cells infected with HIV-2 isolates (lymphadenopathy-associated virus type 2 and SBL-6669) or simian immunodeficiency virus from macaques. Within each type, individual sera showed different reactivity patterns, and the probability that a serum was ADCC positive was higher when it was tested against several strains. When the ADCC reactivity of sera against different strains was compared, diversity as detected by ADCC appeared to be greater among HIV-1 strains than among HIV-2 strains. For HIV-1, 54 to 67% of the sera gave concordant ADCC reactions, whereas for HIV-2 and SIVmac, 91% of the sera gave concordant results. Almost no strain-specific differences were seen between SBL-6669 and lymphadenopathy-associated virus type 2. As we determined previously, HIV-1 and HIV-2 did not cross-react in ADCC. The results indicated that HIV-1 and HIV-2 antibody-positive sera mediate both strain- and type-specific ADCC. HIV-2 antibody-positive sera seem to mediate ADCC with broader reactivity and to a higher frequency compared with HIV-1 antibody-positive sera.  相似文献   

4.
The fine specificities of antibodies produced against human immunodeficiency virus type 1 (HIV-1) gp160 were examined in sera from 23 HIV-1-infected chimpanzees. These animals had been infected with one of six isolates of HIV-1. Sera were screened by enzyme-linked immunosorbent assay for reactivity against seven synthetic peptides corresponding to regions of gp160. Chimpanzees appear to remain healthy after infection with HIV-1, suggesting that these animals may prevent extensive spread of the virus in vivo through immunologic mechanisms. Antibody specificity to gp160 epitopes may play a key role in the defense against HIV-1-related disease. Approximately one-half of all chimpanzee sera contained antibodies reactive with peptide 846-860, which corresponds to the carboxyl terminus of gp41. Less than 10% of sera from HIV-1-infected humans that were examined contained antibodies reactive with peptide 846-860, suggesting that this region is not highly immunogenic in humans. Of the human sera containing antibodies reactive with this peptide, all were from individuals classified as Walter Reed stages 1 to 3. No sera from humans with advanced stages of the disease contained antibodies reactive with peptide 846-860. Peptide 600-611, which reportedly reacts with nearly all sera from HIV-infected humans, was reactive with less than one-half of sera from HIV-1-infected chimpanzees. The observed differences in antibody reactivity to gp160 peptides in sera from HIV-1-infected chimpanzees and humans suggest that each may generate antibodies against differing sets of HIV-1 epitopes. These differences may contribute to the lack of disease progression in chimpanzees after infection with HIV-1.  相似文献   

5.
Antibodies against various proteins of HIV type 1 (HIV-1) can be detected in HIV-1-infected individuals. We previously reported that the level of Ab response against one Nef epitope is correlated with HIV-1 disease progression. To elucidate the mechanism for this correlation, we examined Ab-dependent cellular cytotoxicity (ADCC) against target cells expressing Nef. We observed efficient cytotoxicity against Nef-expressing target cells in the presence of patient plasma and PBMCs. This ADCC activity was correlated with the dilution of plasma from HIV-1-infected patients. Addition of a specific synthetic peptide (peptide 31:FLKEKGGLE) corresponding to the Nef epitope reduced cell lysis to approximately 50%. These results suggest that PBMCs of HIV-1-infected patients may exert ADCC via anti-Nef Abs in the patients' own plasma and serve as a mechanism used by the immune system to regulate HIV-1 replication.  相似文献   

6.
A total of 100% of sera from a large number of HIV-1-infected patients contained antibodies able to elicit Antibody-dependent cellular cytotoxicity lysis of cells infected with the HIV-1 isolates IIIB or RF. Levels of activity could not be correlated with activities in ELISA or neutralizing antibody assays nor with the clinical status of the patients. Surprisingly, 8 of 156 patients sera could additionally elicit lysis of HIV-2-infected cells, and cold target competition assays demonstrated that the cross-reactivity was apparently mediated via recognition of common epitope(s) expressed on the surface of cells infected with either group of HIV. The ADCC mechanism was shown to be mediated by a CD16+ lymphocyte. This demonstration of an effector mechanism able to attack and eliminate cells infected with a wide range of HIV strains has obvious implications for development of putative vaccines.  相似文献   

7.
The presence of antibodies mediating antibody-dependent cellular cytotoxicity (ADCC) against human immunodeficiency virus (HIV)-infected target cells was investigated with 170 sera from patients with varying severity of HIV infection. Approximately 40% of sera from individuals representing all stages of infection were ADCC-positive when tested against HTLV-IIIB infected 0937 clone 2 target cells. The positive sera had higher HIV antibody titers as measured by enzyme-linked immunosorbent assay compared with ADCC-negative sera. ADCC titers were lower in patients with acquired immune deficiency syndrome than in asymptomatic carriers. This decline in ADCC titer was not correlated with a general decrease of HIV antibodies. No correlation between the CD4:CD8 lymphocyte ratio and ADCC activity was found. The possible beneficial effect of ADCC-inducing antibodies early in infection is discussed in relation to the effect of ADCC-inducing antibodies in other retrovirus systems and to the nature of lentivirus infections.  相似文献   

8.
Although human cells are resistant to homologous human complement due to the presence of species-specific membrane inhibitors, a naturally occurring IgM antibody which recognizes an asialo-oligosaccharide can sensitize HIV-1-infected cells for complement-mediated cytolysis. Therefore, we investigated whether long-term survivors of HIV-1 infection harbor such antibodies in their sera. Thirty of 31 sera from HIV-1 seropositive hemophilia patients who have survived HIV-1 infection 10 years or more showed appreciable cytolytic activity, while only 2 sera of 10 seropositive patients presumed to have been infected with HIV-1 (due to sexual contact) more recently showed cytolytic activity. On the other hand, only 7 out of 43 sera from seronegative hemophilia patients showed cytolytic activity. Immunofluorescence staining for IgM on HIV-L -infected cells essentially correlated with the cytolytic capacity of the sera. Therefore, naturally occurring IgM antibodies and/or generated IgM antibodies reactive with the HIV-L -infected cells in patients might have been responsible for long-term survival due to complement-mediated immune cytolysis which may, in conjunction with cytotoxic T lymphocytes, synergistically suppress the infected cells in vivo. Therefore, the transfusion of such IgM antibodies could be effective for the treatment of HIV-L -infected individuals.  相似文献   

9.
HIV-1-specific cell-mediated cytotoxicity (CMC) is a form of antibody-dependent cellular cytotoxicity (ADCC) in which HIV-1-specific antibodies arm NK cells directly to become cytotoxic for targets bearing HIV-1 antigenic determinants. This non-MHC-restricted cytotoxic activity is present in early stages of disease and declines markedly with disease progression. To understand the cellular and humoral factors contributing to the reduction in this activity, the conditions under which maximal arming of cells occurs was examined in vitro. With the use of a large patient cohort, a strong positive correlation was found between the capacity of a serum to direct lysis in standard ADCC assays and its ability to arm NK cells. Patients with minimal HIV-1-specific ADCC-directing antibodies exhibited low levels of CMC and were unable to arm normal effector cells in vitro. The lack of sufficient ADCC-directing antibodies was found to be one cause of defective CMC in some patients. Unlike asymptomatics, only a weak positive correlation was found between arming and ADCC with sera from AIDS patients, indicating that a factor other than absolute HIV-1 specific antibody titer was responsible for decreased CMC in this patient population. Another group of patients was found to have diminished CMC despite the presence of antibodies in the serum that were fully capable of arming normal effector cells to become cytotoxic for gp120-expressing targets. When compared with those of normal individuals, lymphocytes from seropositive patients mediated significantly reduced levels of cytotoxicity in ADCC and arming assays with the use of a high titered HIV-1-specific serum. In both assay systems, the magnitude and frequency of dysfunction in antibody-dependent cytolysis was found to be greater among AIDS patients than among asymptomatic individuals. The demonstration of both cellular and humoral defects in the ability of seropositive individuals to manifest ADCC reactivities strongly suggests that HIV-1 infection may significantly compromise the effectiveness of this potentially important cytolytic reactivity in vivo.  相似文献   

10.
The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1(YU2) gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine.  相似文献   

11.
Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.  相似文献   

12.
Broad HIV-1 neutralization mediated by CD4-binding site antibodies   总被引:17,自引:0,他引:17  
We have identified several patient sera showing potent and broad HIV-1 neutralization. Using antibody adsorption and elution from selected gp120 variants, the neutralizing specificities of the two most broadly reactive sera were mapped to the primary receptor CD4-binding region of HIV-1 gp120. Novel antibodies to the CD4-binding site are elicited in some HIV-1-infected individuals, and new approaches to present this conserved region of gp120 to the immune system may result in improved vaccine immunogens.  相似文献   

13.
We have characterized sera from healthy volunteers immunized with a monomeric recombinant gp120 (rgp120) derived from a CCR5/CXCR4 (R5X4)-using subtype B isolate of human immunodeficiency virus type (HIV-1), HIV-1W61D, in comparison to sera from long-term HIV-1-infected individuals, using homologous reagents. Sera from vaccinees and HIV-1 positive subjects had similar binding titers to native monomeric rgp120W61D and showed a similar titer of antibodies inhibiting the binding of soluble CD4 (sCD4) to rgp120W61D. However, extensive peptide binding studies showed that the overall pattern of recognition of vaccinee and HIV-1-positive sera is different, with vaccinee sera displaying a wider and more potent recognition of linear V1/V2 and V3 domain epitopes. Neutralization of homologous HIV-1W61D or heterologous HIV-1M2424/4 peripheral blood mononuclear cell (PBMC)-derived virus lines by vaccinee sera could be achieved, but only after adaptation of the viruses to T-cell lines and was quickly lost on readaptation to growth in PBMC. Sera from HIV-positive individuals were able to neutralize both PBMC-grown and T-cell line-adapted viruses. Interestingly, rgp120W61D was recognized by monoclonal antibodies previously shown to neutralize primary HIV-1 isolates. The use of very potent adjuvants and R5X4 rgp120 led to an antibody response equivalent in binding activity and inhibition of binding of sCD4 to gp120 to that of HIV-positive individuals but did not lead to the induction of antibodies capable of neutralizing PBMC-grown virus.  相似文献   

14.
The specific binding of antibodies to the V3 loop in sera from human immunodeficiency type 1 (HIV-1)-infected individuals was investigated. Different V3 structures were analyzed as full-length loops or by pepscan. Our data show that on full-length V3 loops, both variable regions on either side of the tip of the loop (GPGRAF) contribute to a common epitope for type-specific antibodies. Type-specific antibodies bound strongly and at high titers to native V3 loops but negligibly once the loop was denatured. In contrast to the type-specific, discontinuous epitope, the linear, conserved epitopes presented by the full-length V3 loop, the tip, the amino-terminal base, and the carboxy-terminal base were not accessible to serum antibody. When the V3 sequences were analyzed with linear peptides, antibodies bound preferentially to peptides containing the conserved GPGRAF sequence. Thus, two different specificities of V3-directed antibodies were detected in patient sera. Unlike group-specific antibodies directed against GPGRAF peptides, lack of type-specific antibodies directed against the discontinuous epitope was correlated with viral escape from autologous neutralization. Our data suggest that the full-length conformation of the V3 loop is accessible predominantly to highly type-specific antibodies present in sera from HIV-1-infected individuals. These antibodies are directed against discontinuous V3 epitopes, not against conserved linear V3 targets. The implications of these findings for viral escape and blockade of infection with V3-based vaccines are discussed.  相似文献   

15.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected individuals from the United States and Tanzania were examined for antibody reactivity to four synthetic peptides which corresponded to the principal neutralizing determinant from the V3 region of HIV-1 gp120. We observed that the majority of sera from both countries contained antibodies reactive with a V3 peptide whose sequence is based on that of the HIV-1 MN isolate. We were unable to establish a relationship between the presence of V3-reactive antibodies, as measured by enzyme-linked immunosorbent assay and neutralization of homologous HIV-1 isolates, in sera from either the United States or Tanzania. We observed that some sera which contained high antibody titers to the V3 peptides failed to neutralize HIV-1, while others with no antibody reactivity to the panel of V3 peptides exhibited in vitro neutralizing activity. These results suggest that neutralizing epitopes exist outside the V3 loop and that the presence of V3-reactive antibodies in sera does not imply in vitro neutralization of the homologous HIV-1 isolate. In addition, it appears that the V3 loop may consist of both neutralizing and nonneutralizing epitopes. The identification of neutralizing as well as nonneutralizing epitopes will be important for the design of potential HIV-1 vaccines.  相似文献   

16.
Among nonneutralizing HIV-1 envelope antibodies (Abs), those capable of mediating antibody-dependent cellular cytotoxicity (ADCC) activity have been postulated to be important for control of HIV-1 infection. ADCC-mediating Ab must recognize HIV-1 antigens expressed on the membrane of infected cells and bind the Fcγ receptor (FcR) of the effector cell population. However, the precise targets of serum ADCC antibody are poorly characterized. The human monoclonal antibody (MAb) A32 is a nonneutralizing antibody isolated from an HIV-1 chronically infected person. We investigated the ability of MAb A32 to recognize HIV-1 envelope expressed on the surface of CD4(+) T cells infected with primary and laboratory-adapted strains of HIV-1, as well as its ability to mediate ADCC activity. The MAb A32 epitope was expressed on the surface of HIV-1-infected CD4(+) T cells earlier than the CD4-inducible (CD4i) epitope bound by MAb 17b and the gp120 carbohydrate epitope bound by MAb 2G12. Importantly, MAb A32 was a potent mediator of ADCC activity. Finally, an A32 Fab fragment blocked the majority of ADCC-mediating Ab activity in plasma of subjects chronically infected with HIV-1. These data demonstrate that the epitope defined by MAb A32 is a major target on gp120 for plasma ADCC activity.  相似文献   

17.
We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies.  相似文献   

18.
Several different strains of simian-human immunodeficiency virus (SHIV) that contain the envelope glycoproteins of either T-cell-line-adapted (TCLA) strains or primary isolates of human immunodeficiency virus type 1 (HIV-1) are now available. One of the advantages of these chimeric viruses is their application to studies of HIV-1-specific neutralizing antibodies in preclinical AIDS vaccine studies in nonhuman primates. In this regard, an important consideration is the spectrum of antigenic properties exhibited by the different envelope glycoproteins used for SHIV construction. The antigenic properties of six SHIV variants were characterized here in neutralization assays with recombinant soluble CD4 (rsCD4), monoclonal antibodies, and serum samples from SHIV-infected macaques and HIV-1-infected individuals. Neutralization of SHIV variants HXBc2, KU2, 89.6, and 89.6P by autologous and heterologous sera from SHIV-infected macaques was restricted to an extent that these viruses may be considered heterologous to one another in their major neutralization determinants. Little or no variation was seen in the neutralization determinants on SHIV variants 89.6P, 89.6PD, and SHIV-KB9. Neutralization of SHIV HXBc2 by sera from HXBc2-infected macaques could be blocked with autologous V3-loop peptide; this was less true in the case of SHIV 89.6 and sera from SHIV 89.6-infected macaques. The poorly immunogenic but highly conserved epitope for monoclonal antibody IgG1b12 was a target for neutralization on SHIV variants HXBc2, KU2, and 89.6 but not on 89.6P and KB9. The 2G12 epitope was a target for neutralization on all five SHIV variants. SHIV variants KU2, 89.6, 89.6P, 89.6PD, and KB9 exhibited antigenic properties characteristic of primary isolates by being relatively insensitive to neutralization in peripheral blood mononuclear cells with serum samples from HIV-1-infected individuals and 12-fold to 38-fold less sensitive to inhibition with recombinant soluble CD4 than TCLA strains of HIV-1. The utility of nonhuman primate models in AIDS vaccine development is strengthened by the availability of SHIV variants that are heterologous in their neutralization determinants and exhibit antigenic properties shared with primary isolates.  相似文献   

19.
Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination.  相似文献   

20.
The aim of the present study was to determine the frequency of IgG, IgA, and IgM antibodies to Mycoplasma penetrans in HIV-1-infected patients and in patients with sexually transmitted diseases. We tested serum samples from 106 HIV-1-positive patients and 110 individuals with clinical symptoms of urethritis. ELISA and the immunoblot test were performed using M. penetrans lipid associated membrane proteins as antigen. By ELISA, we found a higher frequency (P < 0.05) of IgG against M. penetrans in HIV-1-infected and STD patients (25.5 and 17.3%) than in controls (1.2%), as well as a higher frequency of IgA (P < 0.05) (15.1 and 17.3% compared to 1.2%). For IgM, no differences were observed (P >/= 0.05) (3.8, 9.1, and 5. 8%, respectively). When the frequencies of IgG, IgM, and IgA antibodies of the HIV-1-infected patients were compared taking into account the CD4/CD8 cell ratios < 0.3 and >/= 0.3, no significant differences were observed between the two groups (13.3, 10, and 20%, compared to 20, 0, and 5%, respectively) (P > 0.05), possibly due to the low number of samples on which we could perform T-cell counts (53/106). The M. penetrans peptide of 38 kDa, considered immunodominant, was recognized in immunoblot by 51.8% of positive sera by ELISA for IgG, 50.0% for IgM, and 75% for IgA in the AIDS patients group, and by 47.4, 60.0, and 75.0%, respectively, in the sexually transmitted disease group. Cross-reactions in immunoblot for IgG were observed in sera from individuals infected with Mycoplasma pneumoniae and Mycoplasma hominis, and cross-reactions in immunoblot for IgA were observed in sera from individuals infected with M. hominis; all of them were ELISA negative to M. penetrans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号