首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Secretory phospholipases A2 (sPLA2) form a diverse family of enzymes involved in physiologicand pathologic processes. Common among all sPLA2 is the ability to cleave acyl groups of phospholipids at 2C of the glycerol backbone, thereby releasingfatty acid and a lysophospholipid. Several sPLA2 have been cloned and characterized in various tissues.Furthermore, receptors have been identified. In the nervous system sPLA2 groups IIA, IIE, IIF, V, and XII have been identified, and binding sites for sPLA2 group IB (sPLA2-IB) have been found. Here, we report sPLA2-IB in rat and human brain as well as in neurons in primary culture. The distribution of sPLA2-IB seems to be mainly neuronal, with the highest abundance occurring in the cerebral cortex and hippocampus. We also find that genes encoding sPLA2-IB are induced by kainic acid and by electroshock-induced convulsions.Based on the present results we suggest that sPLA2-IB may be a neuronal intercellular signalling modulator.  相似文献   

2.
Similar to other positive-sense, single-stranded RNA viruses, hepatitis C virus (HCV) replicates its genome in a remodeled intracellular membranous structure known as the membranous web (MW). To date, the process of MW formation remains unclear. It is generally acknowledged that HCV nonstructural protein 4B (NS4B) can induce MW formation through interaction with the cytosolic endoplasmic reticulum (ER) membrane. Many host proteins, such as phosphatidylinositol 4-kinase IIIα (PI4KIIIα), have been identified as critical factors required for this process. We now report a new factor, the cytosolic phospholipase A2 gamma (PLA2G4C), which contributes to MW formation, HCV replication, and assembly. The PLA2G4C gene was identified as a host gene with upregulated expression upon HCV infection. Knockdown of PLA2G4C in HCV-infected cells or HCV replicon-containing cells by small interfering RNA (siRNA) significantly suppressed HCV replication and assembly. In addition, the chemical inhibitor methyl arachidonyl fluorophosphonate (MAFP), which specifically inhibits PLA2, reduced HCV replication and assembly. Electron microscopy demonstrated that MW structure formation was defective after PLA2G4C knockdown in HCV replicon-containing cells. Further analysis by immunostaining and immunoprecipitation assays indicated that PLA2G4C colocalized with the HCV proteins NS4B and NS5A in cells infected with JFH-1 and interacted with NS4B. In addition, PLA2G4C was able to transport the HCV nonstructural proteins from replication sites to lipid droplets, the site for HCV assembly. These data suggest that PLA2G4C plays an important role in the HCV life cycle and might represent a potential target for anti-HCV therapy.  相似文献   

3.
Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production.  相似文献   

4.
Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules.  相似文献   

5.
6.
We proposed that group IIA secretory phospholipase A2 (GIIA) participates in neuritogenesis based on our observations that the enzyme migrates to growth cones and neurite tips when PC12 cells are induced to differentiate by nerve growth factor (NGF) (Ferrini et al., Neurochem Res 35:2168–2174, 2010). The involvement of other secretory PLA2 isoforms in neuronal development has been suggested by others but through different mechanisms. In the present study, we compared the subcellular distribution of GIIA and group X sPLA2 (GX) after stimulation of PC12 cells with NGF. We found that GIIA, but not GX, localized at the neuritic tips after treatment with NGF, as demonstrated by immunofluorescence analysis. We also found that NGF stimulated the expression and the activity of GIIA. In addition, NGF induced the expressed myc-tagged GIIA protein to migrate to neurite tips in its active form. We propose that GIIA expression, activity, and subcellular localization is regulated by NGF and that the enzyme may participate in neuritogenesis through intracellular mechanisms, most likely by facilitating the remodelling of glycerophospholipid molecular species by deacylation–reacylation reactions necessary for the incorporation of polyunsaturated fatty acids.  相似文献   

7.
The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.  相似文献   

8.
9.
分泌型磷脂酶A2(secretory phospholipase A2,sPLA2)是磷脂代谢酶中最大的一个亚家族,具有多种生理功能.迄今为止,在人体中总共发现11种sPLA2亚型,它们具有不同的组织分布、水解活性和底物特异性.由于其水解产物主要为花生四烯酸和溶血磷脂,sPLA2常通过影响这两个通路调节细胞功能、炎症反应、抗菌等.本文结合近几年国际上关于sPLA2的研究报道,对于sPLA2的结构、功能、组织定位及与疾病发生发展的关系做一简要概述.  相似文献   

10.
Abstract

Recent studies suggest that antisense phosphorothioate oligonucleotides (APO) are useful tools not only to impair gene expression, but also to modify the splicing of pre-mRNA, as the classical view that they act by suppressing the translation of mature mRNA has been challenged by several examples showing their nuclear site of action. In this work we show that an APO directed against cytosolic phospholipase A2 (cPLA2) mRNA localises in the nucleus and interacts with a specific nuclear protein.  相似文献   

11.
Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50–60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.  相似文献   

12.
We developed C57BL/6 mice with targeted deletion of group X secretory phospholipase A2 (GX KO). These mice have ∼80% higher plasma corticosterone concentrations compared with wild-type (WT) mice under both basal and adrenocorticotropic hormone (ACTH)-induced stress conditions. This increased corticosterone level was not associated with increased circulating ACTH or a defect in the hypothalamic-pituitary axis as evidenced by a normal response to dexamethasone challenge. Primary cultures of adrenal cells from GX KO mice exhibited significantly increased corticosteroid secretion compared with WT cells. Conversely, overexpression of GX secretory phospholipase A2 (sPLA2), but not a catalytically inactive mutant form of GX sPLA2, significantly reduced steroid production 30–40% in Y1 mouse adrenal cell line. This effect was reversed by the sPLA2 inhibitor, indoxam. Silencing of endogenous M-type receptor expression did not restore steroid production in GX sPLA2-overexpressing Y1 cells, ruling out a role for this sPLA2 receptor in this regulatory process. Expression of steroidogenic acute regulatory protein (StAR), the rate-limiting protein in corticosteroid production, was ∼2-fold higher in adrenal glands of GX KO mice compared with WT mice, whereas StAR expression was suppressed in Y1 cells overexpressing GX sPLA2. Results from StAR-promoter luciferase reporter gene assays indicated that GX sPLA2 antagonizes StAR promoter activity and liver X receptor-mediated StAR promoter activation. In summary, GX sPLA2 is expressed in mouse adrenal glands and functions to negatively regulate corticosteroid synthesis, most likely by negatively regulating StAR expression.  相似文献   

13.
Secretory phospholipase A2 (sPLA2s) are small secreted proteins (14–18 kDa) and require submillimolar levels of Ca2+ for liberating arachidonic acid from cell membrane lipids. In addition to the enzymatic function, sPLA2 can exert various biological responses by binding to specific receptors. Physiologically, sPLA2s play important roles on the neurotransmission in the central nervous system and the neuritogenesis in the peripheral nervous system. Pathologically, sPLA2s are involved in the neurodegenerative diseases (e.g., Alzheimer’s disease) and cerebrovascular diseases (e.g., stoke). The common pathology (e.g., neuronal apoptosis) of Alzheimer’s disease and stroke coexists in the mixed dementia, suggesting common pathogenic mechanisms of the two neurological diseases. Among mammalian sPLA2s, sPLA2-IB and sPLA2-IIA induce neuronal apoptosis in rat cortical neurons. The excess influx of calcium into neurons via l-type voltage-dependent Ca2+ channels mediates the two sPLA2-induced apoptosis. The elevated concentration of intracellular calcium activates PKC, MAPK and cytosolic PLA2. Moreover, it is linked with the production of reactive oxygen species and apoptosis through activation of the superoxide producing enzyme NADPH oxidase. NADPH oxidase is involved in the neurotoxicity of amyloid β peptide, which impairs synaptic plasticity long before its deposition in the form of amyloid plaques of Alzheimer’s disease. In turn, reactive oxygen species from NADPH oxidase can stimulate ERK1/2 phosphorylation and activation of cPLA2 and result in a release of arachidonic acid. sPLA2 is up-regulated in both Alzheimer’s disease and cerebrovascular disease, suggesting the involvement of sPLA2 in the common pathogenic mechanisms of the two diseases. Thus, our review presents evidences for pathophysiological roles of sPLA2 in the central nervous system and neurological diseases.  相似文献   

14.

Background

Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X) markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible – in particular, the group V sPLA2 (sPLA2-V) that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells.

Methodology and Principal Findings

The allergen-driven asthma phenotype was significantly reduced in sPLA2-V-deficient mice but to a lesser extent than observed previously in sPLA2-X-deficient mice. The most striking difference observed between the sPLA2-V and sPLA2-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA) in the sPLA2-V−/− mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA2-V−/− mice diminishes Th2 cytokine responses in the airways.

Conclusions

This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders.  相似文献   

15.
Little is known about the regulation of eicosanoid synthesis proximal to the activation of cytosolic phospholipase A2α (cPLA2α), the initial rate-limiting step. The current view is that cPLA2α associates with intracellular/phosphatidylcholine-rich membranes strictly via hydrophobic interactions in response to an increase of intracellular calcium. In opposition to this accepted mechanism of two decades, ceramide 1-phosphate (C1P) has been shown to increase the membrane association of cPLA2α in vitro via a novel site in the cationic β-groove of the C2 domain (Stahelin, R. V., Subramanian, P., Vora, M., Cho, W., and Chalfant, C. E. (2007) J. Biol. Chem. 282, 20467–204741). In this study we demonstrate that C1P is a proximal and required bioactive lipid for the translocation of cPLA2α to intracellular membranes in response to inflammatory agonists (e.g. calcium ionophore and ATP). Last, the absolute requirement of the C1P/cPLA2α interaction was demonstrated for the production of eicosanoids using murine embryonic fibroblasts (cPLA2α−/−) coupled to “rescue” studies. Therefore, this study provides a paradigm shift in how cPLA2α is activated during inflammation.Eicosanoids are a class of bioactive lipids derived from the 20-carbon fatty acid, arachidonic acid (AA),2 including prostaglandins, prostacyclins, thromboxanes, and leukotrienes. The production of AA is the initial rate-limiting step in the production of eicosanoids, and the major phospholipase that regulates eicosanoids synthesis in response to agonists is group IVA cytosolic phospholipase A2 (cPLA2α) (2, 3). Activation of cPLA2 in cells requires the association of the enzyme with intracellular membranes in a Ca2+-dependent manner. This translocation of cPLA2α from the cytosol to intracellular membranes is mediated by a Ca2+-dependent lipid binding domain (CaLB domain) located at the N terminus of the enzyme (47). The CaLB domain is ∼60 amino acids and binds phosphatidylcholine (PC) in a Ca2+-dependent manner (3, 810). However, it is not known if physiologic calcium is sufficient to activate and translocate cPLA2α to membranes in cells or if activation also requires the generation of other activating lipids, such as the focus of this study, ceramide 1-phosphate (C1P).One possible activating lipid, phosphatidylinositol 4,5-diphosphate, was ruled out by Balboa and co-workers (11) as a lipid co-factor required for the translocation of the enzyme. This group showed that the interaction with this lipid (via its catalytic domain) was required for full activity of cPLA2α after the enzyme translocated to the membrane (11). Another recent report by Leslie and co-workers (12) confirmed these findings, and a recent study by our laboratory corroborated these findings utilizing biophysical approaches (1). Specifically, we showed that C1P induced a dramatic increase of cPLA2α activity strictly by increasing the residence time of cPLA2α to membranes, whereas phosphatidylinositol 4,5-diphosphate enhanced the enzymes catalytic activity and membrane penetration (13, 14).Recent studies from our laboratory have also demonstrated that C1P enhances the association of cPLA2α with membranes in vitro via a novel interactions site adjacent to the calcium binding region II of the C2 domain. Mutations of specific amino acids of this region significantly reduced the affinity for C1P (>65%) without an effect on basal enzyme activity, calcium-dependent PC affinity (supplemental Table 1), and phosphatidylinositol 4,5-diphosphate activation/affinity (1, 14). The identification and characterization of the C1P interaction site in cPLA2α allowed our laboratory to determine whether C1P played a role in regulating cPLA2α translocation and, thus, eicosanoid synthesis in response to inflammatory agonists.  相似文献   

16.
17.
18.

Introduction

Early diagnosis of sepsis and bacterial infection is imperative as treatment relies on early antibiotic administration. There is a need to develop new biomarkers to detect patients with sepsis and bacterial infection as early as possible, thereby enabling prompt antibiotic treatment and improving the survival rate.

Methods

Fifty-one adult patients with suspected bacterial sepsis on admission to the Emergency Department (ED) of a teaching hospital were included into the study. All relevant cultures and serology tests were performed. Serum levels for Group II Secretory Phospholipase A2 (sPLA2-IIA) and CD64 were subsequently analyzed.

Results and Discussion

Sepsis was confirmed in 42 patients from a total of 51 recruited subjects. Twenty-one patients had culture-confirmed bacterial infections. Both biomarkers were shown to be good in distinguishing sepsis from non-sepsis groups. CD64 and sPLA2-IIA also demonstrated a strong correlation with early sepsis diagnosis in adults. The area under the curve (AUC) of both Receiver Operating Characteristic curves showed that sPLA2-IIA was better than CD64 (AUC = 0.93, 95% confidence interval (CI) = 0.83–0.97 and AUC = 0.88, 95% CI = 0.82–0.99, respectively). The optimum cutoff value was 2.13μg/l for sPLA2-IIA (sensitivity = 91%, specificity = 78%) and 45 antigen bound cell (abc) for CD64 (sensitivity = 81%, specificity = 89%). In diagnosing bacterial infections, sPLA2-IIA showed superiority over CD64 (AUC = 0.97, 95% CI = 0.85–0.96, and AUC = 0.95, 95% CI = 0.93–1.00, respectively). The optimum cutoff value for bacterial infection was 5.63μg/l for sPLA2-IIA (sensitivity = 94%, specificity = 94%) and 46abc for CD64 (sensitivity = 94%, specificity = 83%).

Conclusions

sPLA2-IIA showed superior performance in sepsis and bacterial infection diagnosis compared to CD64. sPLA2-IIA appears to be an excellent biomarker for sepsis screening and for diagnosing bacterial infections, whereas CD64 could be used for screening bacterial infections. Both biomarkers either alone or in combination with other markers may assist in decision making for early antimicrobial administration. We recommend incorporating sPLA2-IIA and CD64 into the diagnostic algorithm of sepsis in ED.  相似文献   

19.
Phospholipase D (PLD) hydrolyses phosphatidylcholine to produce phosphatidic acid (PA) and choline. It has two isoforms, PLD1 and PLD2, which are differentially expressed depending on the cell type. In mast cells it plays an important role in signal transduction. The aim of the present study was to clarify the role of PLD2 in the secretory pathway. RBL-2H3 cells, a mast cell line, transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2 were used. Previous observations showed that the Golgi complex was well organized in CA cells, but was disorganized and dispersed in CI cells. Furthermore, in CI cells, the microtubule organizing center was difficult to identify and the microtubules were disorganized. These previous observations demonstrated that PLD2 is important for maintaining the morphology and organization of the Golgi complex. To further understand the role of PLD2 in secretory and vesicular trafficking, the role of PLD2 in the secretory process was investigated. Incorporation of sialic acid was used to follow the synthesis and transport of glycoconjugates in the cell lines. The modified sialic acid was subsequently detected by labeling with a fluorophore or biotin to visualize the localization of the molecule after a pulse-chase for various times. Glycoconjugate trafficking was slower in the CI cells and labeled glycans took longer to reach the plasma membrane. Furthermore, in CI cells sialic acid glycans remained at the plasma membrane for longer periods of time compared to RBL-2H3 cells. These results suggest that PLD2 activity plays an important role in regulating glycoconjugate trafficking in mast cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号