首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Besides giving structural support, Sertoli cells regulate the fate of germ cells by supplying a variety of factors. These factors include hormones, several pro- and anti-apoptotic agents and also energetic substrates. Lactate is one of the compounds produced by Sertoli cells, which is utilized as an energetic substrate by germ cells, particularly spermatocytes and spermatids. Beyond its function as an energy source, some studies have proposed a role of lactate in the regulation of gene expression not strictly related to the energetic state of the cells. The general hypothesis that motivated this investigation was that lactate affects male germ cell function, far beyond its well-known role as energetic substrate. To evaluate this hypothesis we investigated: 1) if lactate was able to regulate germ cell gene expression and if reactive oxygen species (ROS) participated in this regulation, 2) if different signal transduction pathways were modified by the production of ROS in response to lactate and 3) possible mechanisms that may be involved in lactate stimulation of ROS production. In order to achieve these goals, cultures of germ cells obtained from male 30-day old rats were exposed to 10 or 20 mM lactate. Increases in lactate dehydrogenase (LDH) C and monocarboxylate transporter (MCT)2 expression, in Akt and p38-MAPK phosphorylation levels and in ROS production were observed. These effects were impaired in the presence of a ROS scavenger. Lactate stimulated ROS production was also inhibited by a LDH inhibitor or a NAD(P)H oxidase (NOX) inhibitor. NOX4 expression was identified in male germ cells. The results obtained herein are consistent with a scenario where lactate, taken up by germ cells, becomes oxidized to pyruvate with the resultant increase in NADH, which is a substrate for NOX4. ROS, products of NOX4 activity, may act as second messengers regulating signal transduction pathways and gene expression.  相似文献   

2.
1. We have investigated the role of reactive oxygen species (ROS) in cell death induced by ischemia or application of the excitatory amino acid agonist, N-methyl-D-aspartate (NMDA) or kainate (KA), in acutely isolated rat cerebellar granule cell neurons, studied by flow cytometry. Various fluorescent dyes were used to monitor intracellular calcium concentration, ROS concentration, membrane potential, and viability in acutely dissociated neurons subjected to ischemia and reoxygenation alone, NMDA or kainate alone, and ischemia and reoxygenation plus NMDA or kainate.2. With ischemia followed by reoxygenation, ROS concentrations rose slightly and there was only a modest increase in cell death after 60 min.3. When NMDA or kainate alone was applied to the cells there was a large increase in ROS and in intracellular calcium concentration but only a small loss of cellular viability. However, when NMDA or kainate was applied during the reoxygenation period there was a large loss of viability, accompanied by membrane depolarization, but the elevations of ROS and intracellular calcium concentration were not greater than seen with the excitatory amino acids alone.4. These observations indicate that other factors beyond ROS and intracellular calcium concentration contribute to cell death in cerebellar granule cell neurons.  相似文献   

3.
信号配体诱导的活性氧生成   总被引:2,自引:0,他引:2  
活性氧(reactiveoxygenspecies,ROS)是生物体内一类活性含氧化合物的总称,主要包括超氧阴离子、羟自由基和过氧化氢等。细胞内有多种部位能生成ROS,主要包括线粒体、内质网、NADPH氧化酶复合体、脂氧合酶系、环氧合酶系等。静息条件下,细胞内ROS的水平被控制在很低的范围。而在细胞受到各种生理或病理因素作用时,当多种细胞外信号分子作用于其膜受体,ROS生成可以受到受体活化的诱导而“有目的”地快速增加,从而作为细胞内信号分子参与细胞增殖,分化和凋亡等各种细胞行为。  相似文献   

4.
Strain Energy Function of Red Blood Cell Membranes   总被引:9,自引:2,他引:7       下载免费PDF全文
The several widely different values of the elastic modulus of the human red blood cell membrane which have been reported in the literature are incorporated into a single strain energy function consisting of two terms. One term gives the small stresses and low elastic modulus which is observed when the red cell membrane is deformed at constant area. The second term contributes a large isotropic stress dependent on the change of area. The strain energy function is applied to the process of sphering of red blood cells in a hypotonic solution. It is shown that a nearly perfect sphere can result even though the red blood cell membrane is homogeneous in all areas of the cell. Results pertinent to sieving and micropipette experiments are also explored.  相似文献   

5.
Mitochondrial DNA (mtDNA) is highly polymorphic, and its variations in humans may contribute to individual differences in function. Zhang and colleagues found a strikingly higher frequency of a C150T transition in the D-loop of mtDNA from centenarians and twins of an Italian population, and also demonstrated that this base substitution causes a remodeling of the mtDNA 151 replication origin in human leukocytes and fibroblasts [1]. The C150T transition is a polymorphism associated with several haplogroups. To determine whether haplogroups that carry the C150T transition display any phenotype that may be advantageous for longevity, we analyzed cybrids carrying or not the C150T transition. These cybrids were obtained by fusing cytoplasts derived from human fibroblasts with human mtDNA-less cells (ρ0 cells). We chose for cybrid construction and analysis haplogroup-matched pairs of fibroblast strains containing or not the C150T transition. In particular, we used, as one pair of mtDNA donors, a fibroblast strain of the U3a haplogroup, carrying the C150T transition and a strain of the U-K2 haplogroup, without the C150T transition, and as another pair, fibroblasts of the J2b haplogroup, carrying the C150T transition and of the J1c haplogroup, without the C150T transition. We have found no association of respiratory capacity, mtDNA level, mitochondrial gene expression level, or growth rate with the presence of the C150T transition. However, we have found that the cybrids with haplogroups that include the C150T transition have in common a lower reactive oxygen species (ROS) production rate than the haplogroup-matched cybrids without that transition. Thus, the lower ROS production rate may be a factor in the increased longevity associated with the U and the J2 haplogroups. Of further interest, we found that cybrids with the U3a haplogroup exhibited a higher respiration rate than the other cybrids examined.  相似文献   

6.
Reactive oxygen species (ROS) are thought to be involved in many forms of programmed cell death. The role of ROS in cell death caused by oxidative glutamate toxicity was studied in an immortalized mouse hippocampal cell line (HT22). The causal relationship between ROS production and glutathione (GSH) levels, gene expression, caspase activity, and cytosolic Ca2+ concentration was examined. An initial 5–10-fold increase in ROS after glutamate addition is temporally correlated with GSH depletion. This early increase is followed by an explosive burst of ROS production to 200–400-fold above control values. The source of this burst is the mitochondrial electron transport chain, while only 5–10% of the maximum ROS production is caused by GSH depletion. Macromolecular synthesis inhibitors as well as Ac-YVAD-cmk, an interleukin 1β–converting enzyme protease inhibitor, block the late burst of ROS production and protect HT22 cells from glutamate toxicity when added early in the death program. Inhibition of intracellular Ca2+ cycling and the influx of extracellular Ca2+ also blocks maximum ROS production and protects the cells. The conclusion is that GSH depletion is not sufficient to cause the maximal mitochondrial ROS production, and that there is an early requirement for protease activation, changes in gene expression, and a late requirement for Ca2+ mobilization.  相似文献   

7.
组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitor, HDACi)是一类新的化疗药物,在体内外的实验中表现出显著的抗癌活性. HDACi选择性抑制肿瘤细胞内抗氧化蛋白的表达,提高细胞内的活性氧水平,引起线粒体和DNA的氧化损伤,从而活化凋亡信号通路,诱导肿瘤细胞凋亡.  相似文献   

8.
9.
10.
11.
Previous studies have demonstrated that the small molecule thrombopoietin (TPO) mimetic, eltrombopag (E), induces apoptosis in acute myeloid leukemia (AML) cells. Here, we sought to define the mechanism of the anti-leukemic effect of eltrombopag. Our studies demonstrate that, at a concentration of 5 μM E in 2% serum, E induces apoptosis in leukemia cells by triggering PARP cleavage and activation of caspase cascades within 2–6 hours. The induction of apoptotic enzymes is critically dependent on drug concentration and the concentration of serum. This effect is not associated with an alteration in mitochondrial potential but is associated with a rapid decrease in a reactive oxygen species (ROS) in particular hydrogen peroxide (H2O2). Interestingly, E also decreases mitochondrial maximal and spare respiratory capacities suggesting an induced mitochondrial dysfunction that may not be readily apparent under basal conditions but becomes manifest only under stress. Co-treatment of MOLM14 AML cells with E plus Tempol or H2O2 provides a partial rescue of cell toxicity. Ferric ammonioum citrate (FAC) also antagonized the E induced toxicity, by inducing notable increase in ROS level. Overall, we propose that E dramatically decreases ROS levels leading to a disruption of AML intracellular metabolism and rapid cell death.  相似文献   

12.
Urotensin II (UII), a somatostatin-like cyclic peptide, is involved in tumor progression due to its mitogenic effect. Our previous study demonstrated that UII and its receptor UT were up-regulated in human hepatocellular carcinoma (HCC), and exogenous UII promoted proliferation of human hepatoma cell line BEL-7402. Hepatic progenitor cell (HPCs) are considered to be one of the origins of liver cancer cells, but their relationship with UII remains unclear. In this work, we aimed to investigate the effect of UII on ROS generation in HPCs and the mechanisms of UII-induced ROS in promoting cell proliferation. Human HCC samples were used to examine ROS level and expression of NADPH oxidase. Hepatic oval cell line WB-F344 was utilized to investigate the underlying mechanisms. ROS level was detected by dihydroethidium (DHE) or 2’, 7’-dichlorofluorescein diacetate (DCF-DA) fluorescent probe. For HCC samples, ROS level and expression of NADPH oxidase were significantly up-regulated. In vitro, UII also increased ROS generation and expression of NADPH oxidase in WB-F344 cells. NADPH oxidase inhibitor apocynin pretreatment partially abolished UII-increased phosphorylation of PI3K/Akt and ERK, expression of cyclin E/cyclin-dependent kinase 2. Cell cycle was then analyzed by flow cytometry and UII-elevated S phase proportion was inhibited by apocynin pretreatment. Finally, bromodeoxyuridine (Brdu) incorporation assay showed that apocynin partially abolished UII induced cell proliferation. In conclusion, this study indicates that UII-increased ROS production via the NADPH oxidase pathway is partially associated with activation of the PI3K/Akt and ERK cascades, accelerates G1/S transition, and contributes to cell proliferation. These results showed that UII plays an important role in growth of HPCs, which provides novel evidence for the involvement of HPCs in the formation and pathogenesis of HCC.  相似文献   

13.
In the present work, the response of tobacco (Nicotiana tabaccum L.) wild-type SR1 and transgenic CAT1AS plants (with a basal reduced CAT activity) was evaluated after exposure to the herbicide paraquat (PQ). Superoxide anion (O2.−) formation was inhibited at 3 or 21 h of exposure, but H2O2 production and ion leakage increased significantly, both in SR1 or CAT1AS leaf discs. NADPH oxidase activity was constitutively 57% lower in non-treated transgenic leaves than in SR1 leaves and was greatly reduced both at 3 or 21 h of PQ treatment. Superoxide dismutase (SOD) activity was significantly reduced by PQ after 21 h, showing a decrease from 70% to 55%, whereas catalase (CAT) activity decreased an average of 50% after 3 h of treatment, and of 90% after 21 h, in SR1 and CAT1AS, respectively. Concomitantly, total CAT protein content was shown to be reduced in non-treated CAT1AS plants compared to control SR1 leaf discs at both exposure times. PQ decreased CAT expression in SR1 or CAT1AS plants at 3 and 21 h of treatment. The mechanisms underlying PQ-induced cell death were possibly not related exclusively to ROS formation and oxidative stress in tobacco wild-type or transgenic plants.  相似文献   

14.
Abstract: Dopamine can oxidize to form reactive oxygen species and quinones, and we have previously shown that dopamine quinones bind covalently to cysteinyl residues on striatal proteins. The dopamine transporter is one of the proteins at risk for this modification, because it has a high affinity for dopamine and contains several cysteinyl residues. Therefore, we tested whether dopamine transport in rat striatal synaptosomes could be affected by generators of reactive oxygen species, including dopamine. Uptake of [3H]dopamine (250 n M ) was inhibited by ascorbate (0.85 m M ; −44%), and this inhibition was prevented by the iron chelator diethylenetriaminepentaacetic acid (1 m M ), suggesting that ascorbate was acting as a prooxidant in the presence of iron. Preincubation with xanthine (500 µ M ) and xanthine oxidase (50 mU/ml) also reduced [3H]dopamine uptake (−76%). Preincubation with dopamine (100 µ M ) caused a 60% inhibition of subsequent [3H]dopamine uptake. This dopamine-induced inhibition was attenuated by diethylenetriaminepentaacetic acid (1 m M ), which can prevent iron-catalyzed oxidation of dopamine during the preincubation, but was unaffected by the monoamine oxidase inhibitor pargyline (10 µ M ). None of these incubations caused a loss of membrane integrity as indicated by lactate dehydrogenase release. These findings suggest that reactive oxygen species and possibly dopamine quinones can modify dopamine transport function.  相似文献   

15.
GPx对活性氧诱发细胞程序性死亡的影响   总被引:1,自引:0,他引:1  
谷胱甘肽过氧化物酶(GPx)是细胞内清除活性氧的主要抗氧化酶之一.以稳定表达GPx的CHO细胞系为模型,研究GPx对百草枯(paraquat)和叔丁基脂氢过氧化物(tbOOH)细胞毒性的影响,发现paraquat和tbOOH都能够诱导CHO细胞产生典型的细胞程序性死亡的形态学改变和特征性的DNA“梯子状”断裂,而稳定表达GPx的细胞系能明显抵抗tbOOH诱发的细胞程序性死亡,但不能抵抗paraquat诱发的细胞程序性死亡.该结果揭示,GPx能选择性抑制活性氧诱发的细胞凋亡.  相似文献   

16.
为探讨原癌基因C-myc-siRNA对子宫内膜癌细胞凋亡的影响,本研究利用细胞计数盒(cell counting Kit-8, CCK-8)法分别检测C-myc-siRNA转染组和空载体转染组(Vector-NC)的子宫内膜癌细胞活力;蛋白免疫印迹法(Western blotting)分别检测C-myc-siRNA转染组和空载体转染组(Vector-NC)的子宫内膜癌细胞凋亡蛋白Bax以及抗凋亡蛋白Bcl-2的变化;流式细胞仪分别检测C-myc-siRNA转染组和空载体转染组(Vector-NC)活性氧簇(reactive oxygen species, ROS)的变化;蛋白免疫印迹法(Western blotting)分别检测预处理NAC (ROS抑制剂)后,C-myc-siRNA转染组和空载体转染组(Vector-NC)的子宫内膜癌细胞凋亡相关蛋白Bax以及Bcl-2的变化。结果表明:C-myc-siRNA转染子宫内膜癌细胞后,促凋亡相关蛋白Bax的表达显著高于空载体转染组,且抗凋亡相关蛋白Bcl-2的表达明显低于空载体转染组(p<0.05);C-myc-siRNA转染子宫内膜癌细胞后,细胞ROS水平明显增加(p<0.05);NAC预处理显著减弱C-myc-siRNA对子宫内膜癌细胞凋亡的促进作用(p<0.05)。本研究结论表明,C-myc-siRNA能够通过调控ROS诱导子宫内膜癌细胞凋亡。  相似文献   

17.
Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S35 and 3H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress.  相似文献   

18.
Anti-cancer chemo-drugs can cause a rapid elevation of intracellular reactive oxygen species (ROS) levels. An imbalance in ROS production and elimination systems leads to cancer cell resistance to chemotherapy. This study aimed to evaluate the mechanism and effect of ROS on multidrug resistance in various human chemoresistant cancer cells by detecting the changes in the amount of ROS, the expression of ROS-related and glycolysis-related genes, and cell death. We found that ROS was decreased while oxidative phosphorylation was increased in chemoresistant cells. We verified that the chemoresistance of cancer cells was achieved in two ways. First, chemoresistant cells preferred oxidative phosphorylation instead of anaerobic glycolysis for energy generation, which increased ATPase activity and produced much more ATP to provide energy. Second, ROS-scavenging systems were enhanced in chemoresistant cancer cells, which in turn decreased ROS amount and thus inhibited chemo-induced cell death. Our in vitro and in vivo photodynamic therapy further demonstrated that elevated ROS production efficiently inhibited chemo-drug resistance and promoted chemoresistant cell death. Taken together, targeting ROS systems has a great potential to treat cancer patients with chemoresistance.  相似文献   

19.
A central question in biology is how spatial information is conveyed to locally establish a developmental program. Rice (Oryza sativa) can survive flash floods by the emergence of adventitious roots from the stem. Epidermal cells that overlie adventitious root primordia undergo cell death to facilitate root emergence. Root growth and epidermal cell death are both controlled by ethylene. This study aimed to identify the signal responsible for the spatial control of cell death. Epidermal cell death correlated with the proximity to root primordia in wild-type and ADVENTITIOUS ROOTLESS1 plants, indicating that the root emits a spatial signal. Ethylene-induced root growth generated a mechanical force of ∼18 millinewtons within 1 h. Force application to epidermal cells above root primordia caused cell death in a dose-dependent manner and was inhibited by 1-methylcyclopropene or diphenylene iodonium, an inhibitor of NADPH oxidase. Exposure of epidermal cells not overlying a root to either force and ethylene or force and the catalase inhibitor aminotriazole induced ectopic cell death. Genetic downregulation of the reactive oxygen species (ROS) scavenger METALLOTHIONEIN2b likewise promoted force-induced ectopic cell death. Hence, reprogramming of epidermal cell fate by the volatile plant hormone ethylene requires two signals: mechanosensing for spatial resolution and ROS for cell death signaling.  相似文献   

20.
蛋白尿不仅反映肾小球损伤,而且是一个独立的导致肾脏病变进展的主要因素,任何能够使蛋白尿减少的治疗干预都有利于减慢肾脏疾病的进展,遗传性蛋白尿性肾病是由于基因突变所致,获得性肾病大量蛋白尿成因目前尚未阐明。免疫异常,炎症介质及氧化应激反应均可导致肾损伤。氧自由基是肾损伤的主要介质,它作为强氧化剂是造成蛋白尿的重要原因之一。活性氧分子(ROS)可以通过降解肾小球乙酰肝素硫酸盐、肾小球基底膜Ⅳ型胶原富含赖氨酸的NCl区域发生交联、损伤足细胞破坏肾小球滤过屏障及与其他活性因子作用增强血清蛋白的渗透性等作用,造成蛋白尿。本文就近年来人们对活性氧造成蛋白尿的机制的研究做一综述,便于帮助医务工作者更好的了解和治疗蛋白尿性肾病。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号