首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Collectively, genes encoding subunits of the SWI/SNF (BAF) chromatin remodeling complex are mutated in 20% of all human cancers, with the SMARCA4 (BRG1) subunit being one of the most frequently mutated. The SWI/SNF complex modulates chromatin remodeling through the activity of two mutually exclusive catalytic subunits, SMARCA4 and SMARCA2 (BRM). Here, we show that a SMARCA2-containing residual SWI/SNF complex underlies the oncogenic activity of SMARCA4 mutant cancers. We demonstrate that a residual SWI/SNF complex exists in SMARCA4 mutant cell lines and plays essential roles in cellular proliferation. Further, using data from loss-of-function screening of 165 cancer cell lines, we identify SMARCA2 as an essential gene in SMARCA4 mutant cancer cell lines. Mechanistically, we reveal that Smarca4 inactivation leads to greater incorporation of the nonessential SMARCA2 subunit into the SWI/SNF complex. Collectively, these results reveal a role for SMARCA2 in oncogenesis caused by SMARCA4 loss and identify the ATPase and bromodomain-containing SMARCA2 as a potential therapeutic target in these cancers.  相似文献   

3.
4.
Human leukocyte antigen II (HLA-II) plays an important role in host immune responses to cancer cells. Changes in gene methylation may result in aberrant expression of HLA-II, serving a key role in the pathogenesis of Kazakh esophageal squamous cell carcinoma (ESCC). We analyzed the expression level of HLA-II (HLA-DP, -DQ, and -DR) by immunohistochemistry, as well as the methylation status of HLA-DRB1 and HLA-DQB1 by MassARRAY spectrometry in Xinjiang Kazakh ESCC. Expression of HLA-II in ESCC was significantly higher than that in cancer adjacent normal (ACN) samples (P < 0.05). Decreased HLA-II expression was closely associated with later clinical stages of ESCC (P < 0.05). Hypomethylation of HLA-DRB1 and hypermethylation of HLA-DQB1 was significantly correlated with occurrence of Kazakh ESCC (P < 0.01), and mainly manifested as hypomethylation of CpG9, CpG10-11, and CpG16 in HLA-DRB1 and hypermethylation of CpG6-7 and CpG16-17 in HLA-DQB1 (P < 0.01). Moreover, hypomethylation of HLA-DQB1 CpG6-7 correlated with poor differentiation in ESCCs, whereas hypermethylation of HLA-DRB1 CpG16 and hypomethylation of HLA-DQB1 CpG16-17 were significantly associated with later stages of ESCC (P < 0.05). A significant inverse association between HLA-DRB1 CpG9 methylation and HLA-II expression was found in ESCC (P < 0.05). These findings suggest aberrant HLA-DRB1 and HLA-DQB1 methylation contributes to the aberrant expression of HLA-II. These molecular changes may influence the immune response to specific tumor epitopes, promoting the occurrence and progression of Kazakh ESCC.  相似文献   

5.
ARID1A, encoding a subunit of SWI/SNF chromatin remodeling complex, is widely recognized as a tumor suppressor gene in multiple tumor types including liver cancer. Previous studies have demonstrated that ARID1A deficiency can cause liver cancer metastasis, possibly due to the altered chromatin organization, however the underlying mechanisms remain poorly understood. To address the effect of Arid1a deficiency on chromatin organization, we generated chromatin interaction matrices, and exploited the conformation changes upon Arid1a depletion in hepatocytes. Our results demonstrated that Arid1a deficiency induced A/B compartment switching, topologically associated domain (TAD) remodeling, and decrease of chromatin loops. Further mechanism studies revealed that ATPase BRG1 of SWI/SNF complex could physically interact with RAD21, a structural subunit of chromatin architectural element cohesin; whereas ARID1A deficiency significantly diminished the coupled BRG1-RAD21. Interestingly, the tumor-associated genes within the switched compartments were differentially expressed depending upon Arid1a depletion or not. As a consequence of ARID1A deficiency-induced conformational alteration, the dysregulation of some genes such as PMP22 and GSC, promoted the invasion capacity of liver cancer cells. This study provides an insight into liver cancer tumorigenesis and progression related to ARID1A mutations.Subject terms: Metastasis, Chromatin remodelling  相似文献   

6.
Rhabdoid tumors of early infancy are highly aggressive with consequent poor prognosis. Most cases show inactivation of the SMARCB1 (also known as INI1 and hSNF5) tumor suppressor, a core member of the ATP-dependent SWI/SNF chromatin-remodeling complex. Familial cases, described as rhabdoid tumor predisposition syndrome (RTPS), have been linked to heterozygous SMARCB1 germline mutations. We identified inactivation of another member of the SWI/SNF chromatin-remodeling complex, its ATPase subunit SMARCA4 (also known as BRG1), due to a SMARCA4/BRG1 germline mutation and loss of heterozygosity by uniparental disomy in the tumor cells of two sisters with rhabdoid tumors lacking SMARCB1 mutations. SMARCA4 is thus a second member of the SWI/SNF complex involved in cancer predisposition. Its general involvement in other tumor entities remains to be established.  相似文献   

7.
8.
Mutations in the AT-interacting domain-rich protein 1A (ARID1A) gene, a critical component of the switch/sucrose nonfermentable (SWI/SNF) complex, are frequently found in most human cancers. Approximately 5–10% of lung cancers carry ARID1A mutations. ARID1A loss in lung cancer correlates with clinicopathological features and poor prognosis. Co-mutation of ARID1A and epidermal growth factor receptor (EGFR) results in the limited efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) but increases the clinical benefit of immune checkpoint inhibitors (ICIs). ARID1A gene mutation plays a role in cell cycle regulation, metabolic reprogramming, and epithelial–mesenchymal transition. We present the first comprehensive review of the relationship between ARID1A gene mutations and lung cancer and discuss the potential of ARID1A as a new molecular target.  相似文献   

9.
ARID1A, encoding a subunit of chromatin remodeling SWI/SNF complexes, has recently been considered as a new type of tumor suppressor gene for its somatic mutations frequently found in various human tumors, including hepatocellular carcinoma (HCC). However, the role and mechanism of inactivated ARID1A mutations in tumorigenesis remain unclear. To investigate the role of ARID1A inactivation in HCC pathogenesis, we generated hepatocyte-specific Arid1a knockout (Arid1a LKO) mice by crossing mice carrying loxP-flanked Arid1a exon 8 alleles (Arid1a f/f) with albumin promoter-Cre transgenic mice. Significantly, the hepatocyte-specific Arid1a deficiency results in mouse steatohepatitis and HCC development. In Arid1a LKO mice, we found that innate immune cells, including F4/80+ macrophages and CD11c+ neutrophil cells, infiltrate into the liver parenchyma, accompanied by the increased tumor necrosis factor (TNF)-α and interleukin (IL)-6, and activation of STAT3 and NF-κB pathways. In conclusion, hepatocyte-specific Arid1a deficiency could lead to mouse steatohepatitis and HCC development. This study provides an alternative mechanism by which Arid1a deficiency contributes to HCC tumorigenesis.  相似文献   

10.
11.
Unfolding of the gene expression program that converts precursor cells to their terminally differentiated counterparts is critically dependent on the nucleosome-remodeling activity of the mammalian SWI/SNF complex. The complex can be powered by either of two alternative ATPases, BRM or BRG1. BRG1 is critical for development and the activation of tissue specific genes and is found in two major stable configurations. The complex of BRG1-associated factors termed BAF is the originally characterized form of mammalian SWI/SNF. A more recently recognized configuration shares many of the same subunits but is termed PBAF in recognition of a unique subunit, the polybromo protein (PBRM1). Two other unique subunits, BRD7 and ARID2, are also diagnostic of PBAF. PBAF plays an essential role in development, apparent from the embryonic lethality of Pbmr1-null mice, but very little is known about the role of PBAF, or its signature subunits, in tissue-specific gene expression in individual differentiation programs. Osteoblast differentiation is an attractive model for tissue-specific gene expression because the process is highly regulated and remains tightly synchronized over a period of several weeks. This model was used here, with a stable shRNA-mediated depletion approach, to examine the role of the signature PBAF subunit, ARID2, during differentiation. This analysis identifies a critical role for ARID2-containing complexes in promoting osteoblast differentiation and supports a view that the PBAF subset of SWI/SNF contributes importantly to maintaining cellular identity and activating tissue-specific gene expression.  相似文献   

12.
Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.  相似文献   

13.
14.
15.
《Epigenetics》2013,8(2):64-68
The SWI/SNF complex is a chromatin-remodeling complex that uses the energy of ATP hydrolysis to modify chromatin structure in order to regulate gene expression. The SWI/SNF complex is evolutionarily conserved in all eukaryotes and is comprised of a catalytic subunit, either of BRG1 (also known as SMARCA4) or of BRM (also known as SMARCA2), and a variety of associated proteins that can modulate the recruitment of the complex and its activity. Key observations link the SWI/SNF complex with cancer. First, two of its subunits (SNF5 and BRG1) bear cancer-inactivating mutations and thus are bona fide tumor suppressors. The SNF5 gene is biallelically inactivated in malignant rhabdoid tumors (MRTs) whereas BRG1 is mutated in cancer cell lines of several types, such as those of the breast, prostate, lung, pancreas and colon. Second, mice heterozygous for mutations at Snf5 and Brg1 are cancer-prone, and, third, BRG1 binds or is related to important tumor-suppressor proteins. The present review focuses on the biological function and genetics of BRG1, particularly with respect to its role as a tumor suppressor.  相似文献   

16.
ObjectiveNeurodevelopmental diseases are common disorders caused by the disruption of essential neurodevelopmental processes. Recent human exome sequencing and genome‐wide association studies have shown that mutations in the subunits of the SWI/SNF (BAF) complex are risk factors for neurodevelopmental diseases. Clinical studies have found that ARID1A (BAF250a) is the most frequently mutated SWI/SNF gene and its mutations lead to mental retardation and microcephaly. However, the function of ARID1A in brain development and its underlying mechanisms still remain elusive.MethodsThe present study used Cre/loxP system to generate an Arid1a conditional knockout mouse line. Cell proliferation, cell apoptosis and cell differentiation of NSPCs were studied by immunofluorescence staining. In addition, RNA‐seq and RT‐PCR were performed to dissect the molecular mechanisms of Arid1a underlying cortical neurogenesis. Finally, rescue experiments were conducted to evaluate the effects of Neurod1 or Fezf2 overexpression on the differentiation of NSPCs in vitro.ResultsConditional knockout of Arid1a reduces cortical thickness in the developing cortex. Arid1a loss of function inhibits the proliferation of radial glial cells, and increases cell death during late cortical development, and leads to dysregulated expression of genes associated with proliferation and differentiation. Overexpression of Neurod1 or Fezf2 in Arid1a cKO NSPCs rescues their neural differentiation defect in vitro.ConclusionsThis study demonstrates for the first time that Arid1a plays an important role in regulating the proliferation and differentiation of NSPCs during cortical development, and proposes several gene candidates that are worth to understand the pathological mechanisms and to develop novel interventions of neurodevelopment disorders caused by Arid1a mutations.  相似文献   

17.
18.
19.
20.
Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号