首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous study of 3-year-old children in a dioxin contamination hot spot in Vietnam, the high total dioxin toxic equivalent (TEQ-PCDDs/Fs)-exposed group during the perinatal period displayed lower Bayley III neurodevelopmental scores, whereas the high 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-exposed group displayed increased autistic traits. In autistic children, urinary amino acid profiles have revealed metabolic alterations in the amino acids that serve as neurotransmitters in the developing brain. Therefore, our present study aimed to investigate the use of alterations in urinary amino acid excretion as biomarkers of dioxin exposure-induced neurodevelopmental deficits in highly exposed 3-year-old children in Vietnam. A nested case-control study of urinary analyses was performed for 26 children who were selected from 111 3-year-old children whose perinatal dioxin exposure levels and neurodevelopmental status were examined in follow-up surveys conducted in a dioxin contaminated hot spot. We compared urinary amino acid levels between the following 4 groups: (1) a high TEQ-PCDDs/Fs and high TCDD-exposed group; (2) a high TEQ-PCDDs/Fs but low TCDD-exposed group; (3) a low TEQ-PCDDs/Fs exposed and poorly developed group; and (4) a low TEQ-PCDDs/Fs exposed and well-developed group. Urinary levels of histidine and tryptophan were significantly decreased in the high TEQ-PCDDs/Fs and high TCDD group, as well as in the high TEQ-PCDDs/Fs but low TCDD group, compared with the low TEQ-PCDDs/Fs and well-developed group. However, the ratio of histidine to glycine was significantly lower only in the high TEQ-PCDDs/Fs and high TCDD group. Furthermore, urinary histidine levels and the ratio of histidine to glycine were significantly correlated with neurodevelopmental scores, particularly for language and fine motor skills. These results indicate that urinary histidine is specifically associated with dioxin exposure-induced neurodevelopmental deficits, suggesting that urinary histidine may be a useful marker of dioxin-induced neurodevelopmental deficits and that histaminergic neurotransmission may be an important pathological contributor to dioxin-mediated neurotoxicity.  相似文献   

2.
Dioxin exposure levels remain elevated in residents living around former US Air Force bases in Vietnam, indicating potential adverse impacts on infant growth. In this study, 210 mother-infant pairs in dioxin-contaminated areas in Vietnam were recruited at the infants' birth and followed up for 4 months. Perinatal dioxin exposure levels were estimated by measurement of polychlorinated dibenzo-p-dioxins/furans toxic equivalent (PCDDs/Fs-TEQ) in breast milk. The infants' size was measured at birth and 1 and 4 months after birth, and neurodevelopment was evaluated using the Bayley Scales III at 4 months of age. Among 4 dioxin groups (<25, 25-50, 50-75, ≥75 percentile of PCDDs/Fs-TEQ), cross-sectional comparisons of body size and neurodevelopment scales and comparisons of longitudinally assessed body size were performed respectively. At birth, head circumference of girls in the ≥75 percentile group was significantly larger than those in the <25 and 50-75 percentile groups. At 4 months of age, the weight and body mass index (BMI) of boys in the ≥75 percentile group were significantly lower than those in the other groups. Increase in weight was significantly lower in the ≥75 percentile group in both sexes from birth to 1 month but only in boys at 1-4 months of age. Estimated marginal mean values in a mixed model of weight and BMI during the first 4 months of life were significantly lower in the ≥75 percentile group in boys. In girls, marginal mean values for head circumference were increased with increase in dioxin levels. Only in boys, cognitive, language, and fine motor scores in the ≥75 percentile group were significantly lower than those in the other groups. These results suggested a considerable impact of perinatal dioxin exposure on infant growth, particularly in boys exposed to dioxins at high level of PCDDs/Fs-TEQ.  相似文献   

3.
Suppressive effects of flavonoids on dioxin toxicity   总被引:1,自引:0,他引:1  
Dioxin type chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause a variety of toxicity. Most of the toxicity of TCDD has been attributed to a mechanism by which TCDD is bound to aryl hydrocarbon receptor (AhR) and transforms the receptor. Thus, suppression of the AhR transformation by food factors can suppress the dioxin toxicity. In this study, flavonoids at various concentrations were treated to a rat cytosolic fraction containing AhR before adding 1 nM TCDD. The transformed AhR was detected by an electrophoretic mobility shift assay with a DNA oligonucleotide consensus to dioxin response element. As the results, flavones and flavonols at dietary levels act as the antagonists for AhR and suppress the transformation. The antagonistic IC50 values were in a range between 0.14 and 10 microM, which are close to the physiological levels in human. These results suggest that a plant-based diet can prevent the dioxin toxicity.  相似文献   

4.
Particle-bound polychlorinated dibenzo-p-dioxins and dibenzo-p-furans (PCDDs/Fs) were analyzed in the coastal air of West Bengal, India. Total PCDD/Fs ranged from 4–2491 fg m–3 with a mean of 355 fg m–3 and their I-TEQ values ranged between 1 to 62.6 fg I-TEQ m–3, with an average of 17.1 fg I-TEQ m–3. The dominant congeners were OCDD (46%) OCDF (14%) 1,2,3,4,6,7,8-HpCDF (11%) and 1,2,3,4,6,7,8-HpCDD (10%) and accounted for >80% to the total PCDDs/Fs. TCDD (29%) > PeCDF (28%) > HxCDF (16%) > PeCDD (13%) were the dominant TEQ contributors. Rough estimates of tolerable daily intake (TDI) show a low health risk of exposure to PCDD/Fs measured in the ambient air of a rural coastal area of West Bengal, India.  相似文献   

5.
Dioxin-2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental toxin of current interest. In the last years, higher levels of TCDD than those permitted in UE [European Commission. 2002. European Commission Recommendation 2002/201/CE. Official Gazette, L 67/69] were detected in milk samples from cow, water buffalo, goat, and sheep raised on some areas of Campania Region (South Italy). Dioxin often causes immunosuppression and might render the animal liable to viral infections. In addition, viral infections are able to alter the pattern of dioxin distribution in different organs of the exposed animals. Bovine Herpesvirus type-1 (BHV-1) is a widespread pathogen, which causes infectious rhinotracheitis and infectious pustular vulvovaginitis in cattle. Herein, we have studied the effects of TCDD and BHV-1 infection, in Madin-Darby Bovine Kidney (MDBK) cells, alone as well as in association, so as cellular proliferation, apoptosis, and virus replication. We have observed an increase in cell viability of confluent monolayers at low TCDD concentrations. TCDD treated cells demonstrated increased viability compared to controls as evaluated by MTT test. TCDD exposure increased cell proliferation but induced no changes on apoptosis. Cells exposed to TCDD along with BHV-1 showed a dose-dependent increase in cytopathy, represented by ample syncytia formation with the elimination of the cellular sheets and increased viral titer. These results suggest that TCDD increases viral replication in MDBK cells while BHV-1 further decreases viability of TCDD exposed cells. Since very low concentrations (0.01 pg/ml) are sufficient to augment BHV-1 titer, TCDD may contribute to reactivate BHV-1 from latency, leading to recurrent disease and increase virus transmission.  相似文献   

6.
7.
Tritiated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) added to human plasma in vitro associated with the plasma lipoproteins. The effects of plasma and lipoproteins on cellular uptake of dioxin were studied using normal human skin fibroblasts and mutant fibroblasts from a patient with homozygous familial hypercholesterolemia. The latter cells lack the normal cell membrane receptor for low density lipoprotein (LDL). The time- and temperature-dependent cellular uptake of [3H]dioxin was greatest from LDL, intermediate from high density lipoprotein (HDL) and least from serum. A significantly greater uptake from LDL by the normal cells compared to the mutant cells indicated the involvement of the LDL receptor-mediated pathway. Concentration-dependent studies indicated that the cellular uptake at 37 degrees C of [3H]dioxin varied linearly with dioxin concentration at constant LDL concentration. Thin-layer chromatography (TLC) showed that conversion to more polar compounds may have occurred after 24-h incubation with cells. [3H]Dioxin could be removed from cells efficiently by incubation with 20% serum greater than HDL greater than LDL. Since the vehicle of delivery may influence subsequent location and metabolism of this compound in cells, it is concluded that the physiologic vehicles (either serum- or LDL-associated dioxin), rather than organic solvents, should be used in experiments with cultured cells or perfused organs.  相似文献   

8.
The documented 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD)‐induced effects on zebrafish Danio rerio including craniofacial malformations and a general retardation of growth, were further characterized in the present study. A significant decrease in total body length and the length of each bone in the upper and lower jaw was identified in exposed larvae from an exposure concentration of 30 ng l−1 TCDD. This study is the first quantitative evidence for the effects of TCDD on the upper jaw and also demonstrates that TCDD‐induced craniofacial malformations and retardation of growth are very sensitive endpoints of dioxin toxicity.  相似文献   

9.
A specific teratogenic response is elicited in the mouse as a result of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). The characteristic spectrum of structural malformations induced in mice following exposure to TCDD and structurally related congeners is highly reproducible and includes both hydronephrosis and cleft palate. In addition, prenatal exposure to TCDD has been shown to induce thymic hypoplasia. These three abnormalities occur at doses well below those producing maternal or embryo/fetal toxicity and are thus among the most sensitive indicators of dioxin toxicity. In all other laboratory species tested, TCDD causes maternal and embryo/fetal toxicity but does not induce a significant increase in the incidence of structural abnormalities even at toxic dose levels. Developmental toxicity occurs in a similar dose range across species; however, mice are particularly susceptible to development of TCDD-induced terata. Recent experiments using an organ culture were an attempt to address the issue of species and organ differences in sensitivity to TCDD. Human palatal shelves examined in this in vitro system were found to approximate the rat in terms of sensitivity for induction of cleft palate. Investigators have suggested that altered regulation of growth factors and their receptors may involve inappropriate proliferation and differentiation of target cells, ultimately producing TCDD-induced terata. Why the teratogenic effects of TCDD are so highly species and tissue specific, and which animal species most accurately predicts the response of the human embryo/fetus, at the levels of exposure experienced by humans, still remains to be clarified.  相似文献   

10.
Gestational exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) has been implicated as causative to disparities between ethnic groups with respect to learning disabilities. Dioxin is an extremely toxic environmental pollutant that bioaccumulates in maternal adipose tissue, and is transferred to the developing organism during gestation and lactation. Long-term cognitive deficits have been reported following prenatal exposure to dioxin. N-methyl-D-aspartate (NMDA) receptors in the central nervous system (CNS) have been well known to play an important role in the activity-dependent synaptic plasticity underlying learning and memory and in CNS development including brain cell differentiation. Here, the effects of prenatal exposure to dioxin on the developmental expression profiles of rat hippocampal NMDA receptor subtype 1 mRNA and protein was examined. F-344 rats were exposed to 0 and 700 ng of dioxin/kg on gestational day 15. Real-time PCR and Western blot analysis clearly revealed that dioxin significantly downregulated NMDAR1 mRNA and protein expression during the first postnatal month. The study provides support to the hypothesis that NMDA receptors are important targets for dioxin-induced neurotoxicity in F1 preweaning pups. The results also support the concept that prenatal exposure to dioxin may contribute to the pathogenesis of diseases in the adult.  相似文献   

11.

Background

Dioxin is an industrial pollutant related to various diseases, but epidemiological data on its effects on the kidney are limited. Therefore, we conducted a study to evaluate the association between dioxin exposure and chronic kidney disease (CKD) and identify the related factors.

Methods

We conducted a community-based cross-sectional study and recruited participants from an area where the residents were exposed to dioxin released from a factory. We defined a “high dioxin level” as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) ≥ 20 pg WHO98-TEQDF/g lipid in the serum and defined CKD as having an estimated glomerular filtration rate (e-GFR) ≤ 60 mL/min/1.73m2 or a diagnosis of CKD by a physician. The renal function was assessed between 2005 and 2010, and we excluded those who had had kidney diseases before the study started. Comparisons between patients of CKD and those who did not have CKD were made to identify the risk factors for CKD.

Results

Of the 2898 participants, 1427 had high dioxin levels, and 156 had CKD. In the univariate analyses, CKD was associated with high dioxin levels, age, gender, metabolic syndrome, diabetes mellitus, hypertension, and high insulin and uric acid levels. After adjusting for other factors, we found high dioxin levels (adjusted odds ratio [AOR] = 1.76, 95% confidence interval [CI]: 1.04–2.99), female gender (AOR = 1.74, 95%CI: 1.20–2.53), hypertension (AOR = 1.68, 95%CI: 1.17–2.42), high insulin levels (AOR = 2.14, 95% CI: 1.26–3.61), high uric acid levels (AOR = 4.25, 95% CI: 2.92–6.20), and older age (AOR = 4.66, 95% CI: 1.87–11.62 for 40–64 year and AOR = 26.66, 95% CI: 10.51–67.62 for age ≥ 65 year) were independent predictors of CKD.

Conclusion

A high dioxin level was associated with an increased prevalence of CKD. Therefore, the kidney function of populations with exposure to dioxin should be monitored.  相似文献   

12.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin; TCDD) is a pervasive environmental contaminant that induces hepatic and extrahepatic oxidative stress. We have previously shown that dioxin increases mitochondrial respiration-dependent reactive oxygen production. In the present study we examined the dependence of mitochondrial reactive oxygen production on the aromatic hydrocarbon receptor (AHR), cytochrome P450 1A1 (CYP1A1), and cytochrome P450 1A2 (CYP1A2), proteins believed to be important in dioxin-induced liver toxicity. Congenic Ahr(-/-), Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice, and C57BL/6J inbred mice as their Ahr/Cyp1a1/Cyp1a2(+/+) wild-type (wt) counterparts, were injected intraperitoneally with dioxin (15 microg/kg body weight) or corn-oil vehicle on 3 consecutive days. Liver mitochondria were examined 1 week following the first treatment. The level of mitochondrial H(2)O(2) production in vehicle-treated Ahr(-/-) mice was one fifth that found in vehicle-treated wt mice. Whereas dioxin caused a rise in succinate-stimulated mitochondrial H(2)O(2) production in the wt, Cyp1a1(-/-), and Cyp1a2(-/-) mice, this increase did not occur with the Ahr(-/-) knockout. The lack of H(2)O(2) production in Ahr(-/-) mice was not due to low levels of Mn(2+)-superoxide dismutase (SOD2) as shown by Western immunoblot analysis, nor was it due to high levels of mitochondrial glutathione peroxidase (GPX1) activity. Dioxin decreased mitochondrial aconitase (an enzyme inactivated by superoxide) by 44% in wt mice, by 26% in Cyp1a2(-/-) mice, and by 24% in Cyp1a1(-/-) mice; no change was observed in Ahr(-/-) mice. Dioxin treatment increased mitochondrial glutathione levels in the wt, Cyp1a1(-/-), and Cyp1a2(-/-) mice, but not in Ahr(-/-) mice. These results suggest that both constitutive and dioxin-induced mitochondrial reactive oxygen production is associated with a function of the AHR, and these effects are independent of either CYP1A1 or CYP1A2.  相似文献   

13.
Environmental compounds can promote epigenetic transgenerational inheritance of adult-onset disease in subsequent generations following ancestral exposure during fetal gonadal sex determination. The current study examined the ability of dioxin (2,3,7,8-tetrachlorodibenzo[p]dioxin, TCDD) to promote epigenetic transgenerational inheritance of disease and DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to dioxin during fetal day 8 to 14 and adult-onset disease was evaluated in F1 and F3 generation rats. The incidences of total disease and multiple disease increased in F1 and F3 generations. Prostate disease, ovarian primordial follicle loss and polycystic ovary disease were increased in F1 generation dioxin lineage. Kidney disease in males, pubertal abnormalities in females, ovarian primordial follicle loss and polycystic ovary disease were increased in F3 generation dioxin lineage animals. Analysis of the F3 generation sperm epigenome identified 50 differentially DNA methylated regions (DMR) in gene promoters. These DMR provide potential epigenetic biomarkers for transgenerational disease and ancestral environmental exposures. Observations demonstrate dioxin exposure of a gestating female promotes epigenetic transgenerational inheritance of adult onset disease and sperm epimutations.  相似文献   

14.
The persistent xenobiotic agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces neurotoxic effects that alters neurodevelopment and behavior both during development and adulthood. There are many ongoing efforts to determine the molecular mechanisms of TCDD-mediated neurotoxicity, the signaling pathways involved and its molecular targets in neurons. In this work, we have used SHSY5Y human neuroblastoma cells to characterize the TCDD-induced toxicity. TCDD produces a loss of viability linked to an increased caspase-3 activity, PARP-1 fragmentation, DNA laddering, nuclear fragmentation and hypodiploid (apoptotic) DNA content, in a similar way than staurosporine, a prototypical molecule of apoptosis induction. In addition, TCDD produces a decrease of mitochondrial membrane potential and an increase of intracellular calcium concentration (P?<?0.05). Finally, based on the high lipophilic properties of the dioxin, we test the TCDD effect on the membrane integrity using sarcoplasmic reticulum vesicles as a model. TCDD produces calcium efflux through the membrane and an anisotropy decrease (P?<?0.05) that reflects an increase in membrane fluidity. Altogether these results support the hypothesis that TCDD toxicity in SHSY5Y neuroblastoma cells provokes the disruption of calcium homeostasis, probably affecting membrane structural integrity, leading to an apoptotic process.  相似文献   

15.
16.
Activation of the aryl hydrocarbon receptor (AHR) can occur in polluted environments, either from smoking-related toxicants or from endogenous ligands. We tested whether acute or chronic exposure to the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the transition to reproductive senescence in female Sprague-Dawley rats. In experiment 1, rats (n = 6 per experimental group) received a single dose of 0 or 10 mug/kg of TCDD orally (p.o.) on Postnatal Day 29. Vaginal cytology was monitored for 1 wk each month until rats were killed at 1 yr of age. The single prepubertal exposure to TCDD hastened the transition to reproductive senescence in female rats and was associated with delayed puberty, abnormal cyclicity, and premature reproductive senescence. In a second experiment, rats were exposed to TCDD chronically through weekly dosing (0, 50, or 200 ng kg(-1) wk(-1) p.o., n = 7 each dose) beginning in utero. Lifelong exposure to these lower doses of TCDD induced a dose- and time-dependent loss of normal cyclicity and significantly hastened the onset of the transition to reproductive senescence (P < 0.05). This premature transition to reproductive senescence was associated with prolonged estrous cycles and, at the highest dose of TCDD, persistent estrus or diestrus. The number and size of ovarian follicles were not altered by TCDD. Diestrous concentrations of LH in rats exposed chronically to TCDD were similar to those in controls, whereas progesterone tended to be elevated at both doses of the dioxin (P < 0.08). Serum FSH was elevated in the group exposed to 50 ng/kg of TCDD (P < 0.02), whereas estradiol was decreased at both doses of dioxin (P < 0.01). Data thus far support endocrine disruption rather than depletion of follicular reserves as a primary mechanism of the premature transition to reproductive senescence following activation of the AHR pathway by TCDD in female rats.  相似文献   

17.
18.
Cu/Zn superoxide dismutase (SOD1) catalyzes the dismutation of superoxide radicals produced during biological oxidations and environmental stress. Here we have investigated the effect of the most toxic dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the promoter of the Cu/Zn superoxide dismutase (SOD1) gene in HepG2 and HeLa cells using the chloramphenicol acetyltransferase gene as a reporter. The SOD1 promoter was activated 4- to 5-fold by TCDD treatment, in a concentration-dependent manner. In addition, the level of SOD1 mRNA and the enzymatic activity of the SOD1 protein were also enhanced on exposure of the cells to TCDD. Functional analysis of the regulatory region of the SOD1 gene by deletion and point mutation, and the use of a heterologous promoter system, showed that the SOD1 gene was transactivated by TCDD via the xenobiotic-responsive element (XRE). Gel mobility shift assays also confirmed the induction and the inducible binding of a receptor-ligand complex to XRE. Yeast cells that overexpress hSOD1 appeared to be more resistant to TCDD than the wild type. These results demonstrate that SOD1 is induced by TCDD via the XRE. The induced SOD1 may accelerate the neutralization of the superoxide anion and thus reduce the oxidative damage associated with dioxin toxicity.  相似文献   

19.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototypical environmental contaminant with neurotoxic properties that alters neurodevelopment and behavior. TCDD is a ligand of the aryl hydrocarbon receptor (AhR), which is a key signaling molecule to fully understand the toxic and carcinogenic properties of dioxin. Much effort is underway to unravel the molecular mechanisms and the signaling pathways involved in TCDD-induced neurotoxicity, and to define its molecular targets in neurons. We have used cerebellar granule cells (CGC) from wild-type (AhR+/+) and AhR-null (AhR-/-) mice to characterize the cell death that takes place in neurons after TCDD toxicity. TCDD induced cell death in CGC cultures from wild-type mice with an EC(50) of 127±21 nM. On the contrary, when CGC neurons from AhR-null mice were treated with TCDD no significant cell death was observed. The role of AhR in TCDD-induced death was further assessed by using the antagonists resveratrol and α-naphtoflavone, which readily protected against TCDD toxicity in AhR+/+ CGC cultures. AhR+/+ CGC cultures treated with TCDD showed nuclear fragmentation, DNA laddering, and increased caspase 3 activity, similarly to what was found by the use of staurosporine, a well-established inducer of apoptosis. Finally, the AhR pathway was active in CGC because TCDD could induce the expression of the target gene cytochrome P450 1A2 in AhR+/+ CGC cultures. All together these results support the hypothesis that TCDD toxicity in CGC neurons involves the AhR and that it takes place mainly through an apoptotic process. AhR could be then considered a novel target in neurotoxicity and neurodegeneration whose down-modulation could block certain xenobiotic-related adverse effects in CNS.  相似文献   

20.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号