首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents.  相似文献   

2.
A collection of 179 human and 156 bovine clinical Salmonella isolates obtained from across New York state over the course of 1 year was characterized using serotyping and a multilocus sequence typing (MLST) scheme based on the sequencing of three genes (fimA, manB, and mdh). The 335 isolates were differentiated into 52 serotypes and 72 sequence types (STs). Analyses of bovine isolates collected on different farms over time indicated that specific subtypes can persist over time on a given farm; in particular, a number of farms showed evidence for the persistence of a specific Salmonella enterica serotype Newport sequence type. Serotypes and STs were not randomly distributed among human and bovine isolates, and selected serotypes and STs were associated exclusively with either human or bovine sources. A number of common STs were geographically widespread. For example, ST6, which includes isolates representing serotype Typhimurium as well as the emerging serotype 4,5,12:i:-, was found among human and bovine isolates in a number of counties in New York state. Phylogenetic analyses supported the possibility that serotype 4,5,12:i:- is closely related to Salmonella serotype Typhimurium. Salmonella serotype Newport was found to represent two distinct evolutionary lineages that differ in their frequencies among human and bovine isolates. A number of Salmonella isolates carried two copies of manB (33 isolates) or showed small deletion events in fimA (nine isolates); these duplication and deletion events may provide mechanisms for the rapid diversification of Salmonella surface molecules. We conclude that the combined use of an economical three-gene MLST scheme and serotyping can provide considerable new insights into the evolution and transmission of Salmonella.  相似文献   

3.
《Genomics》2021,113(5):3152-3162
Species and subspecies within the Salmonella genus have been defined for public health purposes by biochemical properties; however, reference laboratories have increasingly adopted sequence-based, and especially whole genome sequence (WGS), methods for surveillance and routine identification. This leads to potential disparities in subspecies definitions, routine typing, and the ability to detect novel subspecies. A large-scale analysis of WGS data from the routine sequencing of clinical isolates was employed to define and characterise Salmonella subspecies population structure, demonstrating that the Salmonella species and subspecies were genetically distinct, including those previously identified through phylogenetic approaches, namely: S. enterica subspecies londinensis (VII), subspecies brasiliensis (VIII), subspecies hibernicus (IX) and subspecies essexiensis (X). The analysis also identified an additional novel subspecies, reptilium (XI). Further, these analyses indicated that S. enterica subspecies arizonae (IIIa) isolates were divergent from the other S. enterica subspecies, which clustered together and, on the basis of ANI analysis, subspecies IIIa was sufficiently distinct to be classified as a separate species, S. arizonae. Multiple phylogenetic and statistical approaches generated congruent results, suggesting that the proposed species and subspecies structure was sufficiently biologically robust for routine application. Biochemical analyses demonstrated that not all subspecies were distinguishable by these means and that biochemical approaches did not capture the genomic diversity of the genus. We recommend the adoption of standardised genomic definitions of species and subspecies and a genome sequence-based approach to routine typing for the identification and definition of novel subspecies.  相似文献   

4.
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype.  相似文献   

5.
The accurate sub-typing of Salmonella enterica isolates is essential for epidemiological investigations and surveillance of Salmonella infections. Salmonella isolates are currently identified using the Kauffman-White serotyping scheme. Multilocus sequence typing (MLST) schemes have been developed for the major bacterial pathogens including Salmonella and have assisted in understanding the molecular epidemiology and population biology of these organisms. Recently, the DiversiLab rep-PCR system has been developed using micro-fluidic chips to provide standardized, semi-automated fingerprinting for pathogens including S. enterica. In the current study, 71 isolates of S. enterica, representing 21 serovars, were analyzed using MLST and the DiversiLab rep-PCR system. MLST was able to identify 31 sequence types (STs), while the DiversiLab system revealed 38 DiversiLab types (DTs). The rep-PCR distinguished isolates of different serovars and showed greater discriminatory power (0.95) than MLST typing (0.89). Rep-PCR exhibited 92% concordance with MLST and 90% with serotyping, while the concordance level of MLST typing with serotyping was 96%, representing a strong association. Comparison of rep-PCR profiles with those held in an online library database led to the accurate prediction of serovar in 63% of cases and resulted in inaccurate predictions for 10% of profiles. MLST and the rep-PCR system may provide useful additional informative techniques for the molecular identification of S. enterica. We conclude that the DiversiLab rep-PCR system may provide a rapid (less than 4 h) and standardized method for sub-typing isolates of S. enterica.  相似文献   

6.
Serotyping has been the gold standard for identifying Salmonella, but it requires large amounts of standard antisera. Multilocus sequence typing (MLST) has been applied to identify Salmonella serovars, but the recombination of 4–7 housekeeping genes and multiple analytic steps diminish its applicability. In the present study, we determined the complete sequences of the RNA polymerase beta subunit gene (rpoB) and 7 housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA) for 76 strains of 33 Salmonella enterica serovars and conducted phylogenetic analyses together with the corresponding gene sequences of 24 reference strains registered in the GenBank database. Based on the phylogenetic analyses, 100 strains from 40 serovars and 91 strains from 37 serovars were classified into 60 rpoB (RST) and 49 multilocus sequence types (ST), respectively. The nucleotide similarities were 98.8–100% and 96.9–100% for the complete rpoB gene and the seven concatenated housekeeping genes, respectively. The strains of 35 and 30 serovars formed serovar-specific branches or clusters in the rpoB and housekeeping gene phylogenetic trees, respectively. Therefore, complete rpoB gene sequencing and phylogenetic analysis may be a useful method for identifying Salmonella serovars that is a simpler, more cost-effective, and less time-consuming alternative or complementary method to MLST and conventional serotyping.  相似文献   

7.
The Gram-positive anaerobic bacterium Propionibacterium acnes is a prevalent member of the normal skin microbiota of human adults. In addition to its suspected role in acne vulgaris it is involved in a variety of opportunistic infections. Multi-locus sequence-typing (MLST) schemes identified distinct phylotypes associated with health and disease. Being based on 8 to 9 house-keeping genes these MLST schemes have a high discriminatory power, but their application is time- and cost-intensive. Here we describe a single-locus sequence typing (SLST) scheme for P. acnes. The target locus was identified with a genome mining approach that took advantage of the availability of representative genome sequences of all known phylotypes of P. acnes. We applied this SLST on a collection of 188 P. acnes strains and demonstrated a resolution comparable to that of existing MLST schemes. Phylogenetic analysis applied to the SLST locus resulted in clustering patterns identical to a reference tree based on core genome sequences. We further demonstrate that SLST can be applied to detect multiple phylotypes in complex microbial communities by a metagenomic pyrosequencing approach. The described SLST strategy may be applied to any bacterial species with a basically clonal population structure to achieve easy typing and mapping of multiple phylotypes in complex microbiotas. The P. acnes SLST database can be found at http://medbac.dk/slst/pacnes.  相似文献   

8.
Cryptococcus gattii (C. gattii) is a fungal pathogen that once caused an outbreak of cryptococcosis on Vancouver Island, and had spread worldwide, while few data were available in China. In this study, seven clinical isolates of C. gattii VGII were collected from 19 hospitals, Multi-locus Sequence Typing (MLST) analysis and whole-genome sequencing (WGS) was performed, combined with published data for phylogenetic analysis. In addition, in vitro antifungal susceptibility testing, phenotypic analysis, and in vivo virulence studies were performed, subsequently, histopathological analysis of lung tissue was performed. C.gattii VGII infected patients were mainly immunocompetent male, and most of them had symptoms of central nervous system (CNS) involvement. MLST results showed that isolates from China exhibited high genetic diversity, and sequence type (ST) 7 was the major ST among the isolates. Some clinical isolates showed a close phylogenetic relationship with strains from Australia and South America. All clinical isolates did not show resistance to antifungal drugs. In addition, there was no correlation between virulence factors (temperature, melanin production, and capsule size) and virulence while in vivo experiments showed significant differences in virulence among strains. Lung fungal burden and damage to lung tissue correlated with virulence, and degree of damage to lung tissue in mice may highlight differences in virulence. Our work seeks to provide useful data for molecular epidemiology, antifungal susceptibility, and virulence differences of C. gattii VGII in China.  相似文献   

9.
Our previous work indicated a predominance (56.8%) of Salmonella enterica serovar Newport among isolates recovered from irrigation ponds used in produce farms over a 2-year period (B. Li et al., Appl Environ Microbiol 80:6355–6365, http://dx.doi.org/10.1128/AEM.02063-14). This observation provided a valuable set of metrics to explore an underaddressed issue of environmental survival of Salmonella by DNA microarray. Microarray analysis correctly identified all the isolates (n = 53) and differentiated the S. Newport isolates into two phylogenetic lineages (S. Newport II and S. Newport III). Serovar distribution analysis showed no instances where the same serovar was recovered from a pond for more than a month. Furthermore, during the study, numerous isolates with an indistinguishable genotype were recovered from different ponds as far as 180 km apart for time intervals as long as 2 years. Although isolates within either lineage were phylogenetically related as determined by microarray analysis, subtle genotypic differences were detected within the lineages, suggesting that isolates in either lineage could have come from several unique hosts. For example, strains in four different subgroups (A, B, C, and D) possessed an indistinguishable genotype within their subgroups as measured by gene differences, suggesting that strains in each subgroup shared a common host. Based on this comparative genomic evidence and the spatial and temporal factors, we speculated that the presence of Salmonella in the ponds was likely due to numerous punctuated reintroduction events associated with several different but common hosts in the environment. These findings may have implications for the development of strategies for efficient and safe irrigation to minimize the risk of Salmonella outbreaks associated with fresh produce.  相似文献   

10.
Multilocus sequence typing (MLST) based on six loci was used to analyze the relationship of 58 Candida tropicalis isolates from individual patients in a general hospital in Beijing, China. A total of 52 diploid sequence types (DSTs) were generated by the MLST, all of which were new to the central database. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrograms were constructed, which showed that the 58 isolates were distributed robustly and 6 main groups were clustered regardless of the specimen source and medical department. The minimum spanning tree (MST) of the 58 isolates (52 DSTs) and all 401 isolates (268 DSTs) in the C. tropicalis central database (http://pubmlst.org/ctropicalis/) indicated that the isolates in this study clustered in three relative pure clonal complexes, and 2 clustered with isolates from Taiwan, Belgium, Brazil, and the US. This study presents the first MLST analysis of C. tropicalis isolates from Mainland China, which may be useful for further studies on the similarity, genetic relationship, and molecular epidemiology of C. tropicalis strains worldwide.  相似文献   

11.
Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoidal Salmonella isolated from ill humans in Pennsylvania and from food animals before retail. Human clinical isolates were received from 2005 through 2011 during routine public health operations in Pennsylvania. Isolates from cattle, chickens, swine and turkeys were recovered during the same period from federally inspected slaughter and processing facilities in the northeastern United States. We found that subtyping Salmonella isolates by PFGE revealed differences in antimicrobial susceptibility patterns and, for human Salmonella, differences in sources and invasiveness that were not evident from serotyping alone. Sixteen of the 20 most common human Salmonella PFGE patterns were identified in Salmonella recovered from food animals. The most common human Salmonella PFGE pattern, Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS), was associated with more cases of invasive salmonellosis than all other patterns. In food animals, this pattern was almost exclusively (99%) found in Salmonella recovered from chickens and was present in poultry meat in every year of the study. Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS) was associated with susceptibility to all antimicrobial agents tested in 94.7% of human and 97.2% of food animal Salmonella isolates. In contrast, multidrug resistance (resistance to three or more classes of antimicrobial agents) was observed in five PFGE patterns. Typhimurium patterns JPXX01.0003 (JPXX01.0003 ARS) and JPXX01.0018 (JPXX01.0002 ARS), considered together, were associated with resistance to five or more classes of antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT), in 92% of human and 80% of food animal Salmonella isolates. The information from our study can assist in source attribution, outbreak investigations, and tailoring of interventions to maximize their impact on prevention.  相似文献   

12.
To overcome some of the deficiencies with current molecular typing schema for Campylobacter spp., we developed a prototype PCR binary typing (P-BIT) approach. We investigated the distribution of 68 gene targets in 58 Campylobacter jejuni strains, one Campylobacter lari strain, and two Campylobacter coli strains for this purpose. Gene targets were selected on the basis of distribution in multiple genomes or plasmids, and known or putative status as an epidemicity factor. Strains were examined with Penner serotyping, pulsed-field gel electrophoresis (PFGE; using SmaI and KpnI enzymes), and multilocus sequence typing (MLST) approaches for comparison. P-BIT provided 100% typeability for strains and gave a diversity index of 98.5%, compared with 97.0% for SmaI PFGE, 99.4% for KpnI PFGE, 96.1% for MLST, and 92.8% for serotyping. Numerical analysis of the P-BIT data clearly distinguished strains of the three Campylobacter species examined and correlated somewhat with MLST clonal complex assignations and with previous classifications of “high” and “low” risk. We identified 18 gene targets that conferred the same level of discrimination as the 68 initially examined. We conclude that P-BIT is a useful approach for subtyping, offering advantages of speed, cost, and potential for strain risk ranking unavailable from current molecular typing schema for Campylobacter spp.Campylobacter species, particularly C. jejuni subsp. jejuni (hereafter C. jejuni), represent the most commonly reported bacterial cause of gastroenteritis in humans in the developed world (47), with New Zealand having one of the highest rates of infection (55). The sheer scale of infection makes concerted epidemiological studies difficult, as does the extremely wide distribution of the organism, found in all major avian and mammalian food animals, their products, and indeed environments. Moreover, many Campylobacter spp. are susceptible to spontaneous genetic change through a variety of mechanisms that can result in conflicting data for genetic typing methods aiming to establish a molecular epidemiological link between strains (reviewed by On and colleagues [47]).The poor discrimination of phenotypic typing methods led to intense developments in molecular epidemiological tools for more accurate data. Although a wide range of genotypic methods have been described (47), two methods are now more commonly used by laboratories worldwide. The availability of standardized protocols for macrorestriction profiling with pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) have facilitated major contributions to our understanding of the epidemiology of these bacteria. Nonetheless, issues remain, notably relating to the speed, cost, and ease of data analysis from these methods. Furthermore, although MLST has proven useful in evaluating the original host of a given strain, no current methods provide information on the relative risk to human health from individual strains. Various studies, including those identifying stable clones found in humans and various animals as well as strain types only in a particular animal host (5, 13, 38, 48, 61), and whole-genome microarray-based comparisons revealing a correlation between genome content and stress survival (46) indicate that not all strains are of equal risk to humans.In this study, we designed a range of specific PCR assays and investigated the distribution of 68 genes associated with epidemicity factors in C. jejuni, to establish the basis of a novel PCR binary typing (P-BIT) system that is inexpensive, rapid, and highly portable. We compared our data with MLST and PFGE (using restriction enzymes SmaI and KpnI) results for the same isolates of C. jejuni (n = 58), C. coli (n = 2), and C. lari (n = 1).  相似文献   

13.
Salmonella enterica isolates were recovered from swine at a collaborating processing plant over a 2-month period in the spring of 2000. In the present study, molecular subtyping by pulsed-field gel electrophoresis (PFGE) was performed on the 581 confirmed Salmonella isolates from the 84 Salmonella-positive samples obtained from the previous study. A total of 32 different PFGE pulsotypes were observed visually, and a BioNumerics software analysis clustered those pulsotypes into 12 PFGE groups. The B, F, and G groups predominated throughout the sampling period and were isolated from 39, 22, and 13% of the swine, respectively. In addition, multiple isolates were obtained from 67 of the 84 Salmonella-positive samples, and subtyping revealed multiple PFGE profiles in 35 of these 67 (62%) samples. Both carcass and fecal isolates of Salmonella were recovered from 13 swine, resulting in “matched” samples. Molecular typing of the 252 isolates recovered from the matched samples revealed that 7 (54%) of the 13 carcasses were contaminated with Salmonella pulsotypes that were not isolated from the feces of the same animal. Conversely, from 6 of the 13 (46%) matched animals, Salmonella clonal types were isolated from the feces that were not isolated from the carcass of the same animal. These data establish that each lot of swine introduces new contaminants into the plant environment and that swine feces from one animal can contaminate many carcasses. In addition, these results indicate that the examination of multiple Salmonella isolates from positive samples is necessary to determine the variety of potential contaminants of swine carcasses during slaughter and processing.  相似文献   

14.
Effective surveillance and management of pathogenic Escherichia coli relies on robust and reproducible typing methods such as multilocus sequence typing (MLST). Typing of E. coli by MLST enables tracking of pathogenic clones that are known to carry virulence factors or spread resistance, such as the globally-prevalent ST131 lineage. Standard MLST for E. coli requires sequencing of seven alleles, or a whole genome, and can take several days. Here, we have developed and validated a nucleic-acid-based MALDI-TOF mass spectrometry (MS) method for MLST as a rapid alternative to sequencing that requires minimal operator expertise. Identification of alleles was 99.6% concordant with sequencing. We employed MLST by MALDI-TOF MS to investigate diversity among 62 E. coli isolates from Sydney, Australia, carrying a bla CMY-2-like gene on an IncI1 plasmid to determine whether any dominant clonal lineages are associated with the spread of this globally-disseminated resistance gene. Thirty-four known sequence types were identified, including lineages associated with human disease, animal and environmental sources. This suggests that the dissemination of bla CMY-2-like-genes is more complex than the simple spread of successful pathogenic clones. E. coli MLST by MALDI-TOF MS, employed here for the first time, can be utilised as an automated tool for large-scale population analyses or for targeted screening for known high-risk clones in a diagnostic setting.  相似文献   

15.
Recent isolation of Pseudomonas aeruginosa strains from the open ocean and subsequent pulsed-field gel electrophoresis analyses indicate that these strains have a unique genotype (N. H. Khan, Y. Ishii, N. Kimata-Kino, H. Esaki, T. Nishino, M. Nishimura, and K. Kogure, Microb. Ecol. 53:173-186, 2007). We hypothesized that ocean P. aeruginosa strains have a unique phylogenetic position relative to other strains. The objective of this study was to clarify the intraspecies phylogenetic relationship between marine strains and other strains from various geographical locations. Considering the advantages of using databases, multilocus sequence typing (MLST) was chosen for the typing and discrimination of ocean P. aeruginosa strains. Seven housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE) were analyzed, and the results were compared with data on the MLST website. These genes were also used for phylogenetic analysis of P. aeruginosa. Rooted and unrooted phylogenetic trees were generated for each gene locus and the concatenated gene fragments. MLST data showed that all the ocean strains were new. Trees constructed for individual and concatenated genes revealed that ocean P. aeruginosa strains have clusters distinct from those of other P. aeruginosa strains. These clusters roughly reflected the geographical locations of the isolates. These data support our previous findings that P. aeruginosa strains are present in the ocean. It can be concluded that the ocean P. aeruginosa strains have diverged from other isolates and form a distinct cluster based on MLST and phylogenetic analyses of seven housekeeping genes.  相似文献   

16.
Paenibacillus larvae is the causative agent of the fatal American foulbrood disease in honeybees (Apis mellifera). Strain identification is vital for preventing the spread of the disease. To date, the most accessible and robust scheme to identify strains is the multilocus sequence typing (MLST) method. However, this approach has limited resolution, especially for epidemiological studies. As the cost of whole-genome sequencing has decreased and as it becomes increasingly available to most laboratories, an extended MLST based on the core genome (cgMLST) presents a valuable tool for high-resolution investigations. In this study, we present a standardized, robust cgMLST scheme for P. larvae typing using whole-genome sequencing. A total of 333 genomes were used to identify, validate and evaluate 2419 core genes. The cgMLST allowed fine-scale differentiation between samples that had the same profile using traditional MLST and allowed for the characterization of strains impossible by MLST. The scheme was successfully used to trace a localized Swedish outbreak, where a cluster of 38 isolates was linked to a country-wide beekeeping operation. cgMLST greatly enhances the power of a traditional typing scheme, while preserving the same stability and standardization for sharing results and methods across different laboratories.  相似文献   

17.
The aim of this study was to determine sequence types of 34 S. haemolyticus strains isolated from a variety of infections between 2013 and 2016 in India by MLST. The MEGA5.2 software was used to align and compare the nucleotide sequences. The advanced cluster analysis was performed to define the clonal complexes. MLST analysis showed 24 new sequence types (ST) among S. haemolyticus isolates, irrespective of sources and place of isolation. The finding of this study allowed to set up an MLST database on the PubMLST.org website using BIGSdb software and made available at http://pubmlst.org/shaemolyticus/. The data of this study thus suggest that MLST can be used to study population structure and diversity among S. haemolyticus isolates.  相似文献   

18.
Leptospirosis is an important zoonosis with widespread human health implications. The non-availability of accurate identification methods for the individualization of different Leptospira for outbreak investigations poses bountiful problems in the disease control arena. We harnessed fluorescent amplified fragment length polymorphism analysis (FAFLP) for Leptospira and investigated its utility in establishing genetic relationships among 271 isolates in the context of species level assignments of our global collection of isolates and strains obtained from a diverse array of hosts. In addition, this method was compared to an in-house multilocus sequence typing (MLST) method based on polymorphisms in three housekeeping genes, the rrs locus and two envelope proteins. Phylogenetic relationships were deduced based on bifurcating Neighbor-joining trees as well as median joining network analyses integrating both the FAFLP data and MLST based haplotypes. The phylogenetic relationships were also reproduced through Bayesian analysis of the multilocus sequence polymorphisms. We found FAFLP to be an important method for outbreak investigation and for clustering of isolates based on their geographical descent rather than by genome species types. The FAFLP method was, however, not able to convey much taxonomical utility sufficient to replace the highly tedious serotyping procedures in vogue. MLST, on the other hand, was found to be highly robust and efficient in identifying ancestral relationships and segregating the outbreak associated strains or otherwise according to their genome species status and, therefore, could unambiguously be applied for investigating phylogenetics of Leptospira in the context of taxonomy as well as gene flow. For instance, MLST was more efficient, as compared to FAFLP method, in clustering strains from the Andaman island of India, with their counterparts from mainland India and Sri Lanka, implying that such strains share genetic relationships and that leptospiral strains might be frequently circulating between the islands and the mainland.  相似文献   

19.
Rhinoviruses (RV) are increasingly being reported to cause mild to severe infections of respiratory tract in humans. RV are antigenically the most diverse species of the genus Enterovirus and family Picornaviridae. There are three species of RV (RV-A, -B and -C), with 80, 32 and 55 serotypes/types, respectively. Antigenic variation is the main limiting factor for development of a cross-protective vaccine against RV.Serotyping of Rhinoviruses is carried out using cross-neutralization assays in cell culture. However, these assays become laborious and time-consuming for the large number of strains. Alternatively, serotyping of RV is carried out by alignment-based phylogeny of both protein and nucleotide sequences of VP1. However, serotyping of RV based on alignment-based phylogeny is a multi-step process, which needs to be repeated every time a new isolate is sequenced. In view of the growing need for serotyping of RV, an alignment-free method based on “return time distribution” (RTD) of amino acid residues in VP1 protein has been developed and implemented in the form of a web server titled RV-Typer. RV-Typer accepts nucleotide or protein sequences as an input and computes return times of di-peptides (k = 2) to assign serotypes. The RV-Typer performs with 100% sensitivity and specificity. It is significantly faster than alignment-based methods. The web server is available at http://bioinfo.net.in/RV-Typer/home.html.  相似文献   

20.
BackgroundThe proportion of enteric fever cases caused by Salmonella Paratyphi A is increasing and may increase further as we begin to introduce typhoid conjugate vaccines (TCVs). While numerous epidemiological and genomic studies have been conducted for S. Typhi, there are limited data describing the genomic epidemiology of S. Paratyphi A in especially in endemic settings, such as Bangladesh.Principal findingsWe conducted whole genome sequencing (WGS) of 67 S. Paratyphi A isolated between 2008 and 2018 from eight enteric disease surveillance sites across Bangladesh. We performed a detailed phylogenetic analysis of these sequence data incorporating sequences from 242 previously sequenced S. Paratyphi A isolates from a global collection and provided evidence of lineage migration from neighboring countries in South Asia. The data revealed that the majority of the Bangladeshi S. Paratyphi A isolates belonged to the dominant global lineage A (67.2%), while the remainder were either lineage C (19.4%) or F (13.4%). The population structure was relatively homogenous across the country as we did not find any significant lineage distributions between study sites inside or outside Dhaka. Our genomic data showed presence of single point mutations in gyrA gene either at codon 83 or 87 associated with decreased fluoroquinolone susceptibility in all Bangladeshi S. Paratyphi A isolates. Notably, we identified the pHCM2- like cryptic plasmid which was highly similar to S. Typhi plasmids circulating in Bangladesh and has not been previously identified in S. Paratyphi A organisms.SignificanceThis study demonstrates the utility of WGS to monitor the ongoing evolution of this emerging enteric pathogen. Novel insights into the genetic structure of S. Paratyphi A will aid the understanding of both regional and global circulation patterns of this emerging pathogen and provide a framework for future genomic surveillance studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号