共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gastric inhibitory polypeptide (GIP) is a gut derived peptide with multiple emerging physiological actions. Effects of pregnancy and lactation on GIP secretion and related gene expression were studied in Wistar rats. Pregnancy moderately increased feeding (p<0.05), whilst lactation substantially increased food intake (p<0.01 to p<0.001). Circulating GIP was unchanged during pregnancy, but non-fasting plasma glucose was significantly (p<0.01) decreased and insulin increased (p<0.05). Lactation was associated with elevated circulating GIP concentrations (p<0.001) without change of glucose or insulin. Oral glucose resulted in a significantly (p<0.001) decreased glycaemic excursion despite similar glucose-induced GIP and insulin concentrations in lactating rats. Pregnant rats had a similar glycaemic excursion but exhibited significantly lowered (p<0.05) GIP accompanied by elevated (p<0.001) insulin levels. Pregnant rats exhibited increased (p<0.001) islet numbers and individual islet areas were enlarged (p<0.05). There were no significant differences in islet alpha-cell areas, but all groups of rats displayed co-expression of glucagon and GIP in alpha-cells. Lactating rats exhibited significantly (p<0.01) increased intestinal weight, whereas intestinal GIP stores were significantly (p<0.01) elevated only in pregnant rats. Gene expression studies in lactating rats revealed prominent (p<0.01 to p<0.001) increases in mammary gland expression of genes involved in energy turnover, including GIP-R. GIP was present in intestines and plasma of 17 day old foetal rats, with substantially raised circulating concentrations in neonates throughout the period of lactation/suckling. These data indicate that changes in the secretion and action of GIP play an important role in metabolic adaptations during pregnancy and especially lactation. 相似文献
3.
Background
Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards.Methodology/Principal Findings
To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (−35 d), day 7 before parturition (−7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (−35 d, −7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥2 or ≤−2 and a false discovery rate (FDR) of ≤0.001, a total of 812 genes were significantly differentially expressed at −7 d compared with −35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with −7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with −35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes.Conclusions
The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell''s resources towards lactation. 相似文献4.
实验采用荧光定量PCR方法研究了小鼠在妊娠和泌乳过程中葡萄糖转运载体SLC2A1、SLC2A4与SLC5A1 mRNA的表达规律.结果表明与妊娠期相比,SLC2A1在泌乳期的表达量上调,泌乳18 d是妊娠18 d表达量的11倍(P〈0.01);SLC2A4的表达在妊娠和泌乳期无显著差异;SLCSA1的表达量从妊娠至泌乳期呈上升趋势,泌乳18 d是妊娠18 d表达量的2.5倍(P〈0.01).SLC2A1是小鼠乳腺泌乳时主要的葡萄糖转运载体,SLCSA1在乳腺葡萄糖的转运过程中也发挥重要作用. 相似文献
5.
Michael K. G. Stewart Isabelle Plante John F. Bechberger Christian C. Naus Dale W. Laird 《PloS one》2014,9(7)
Connexin26 (Cx26) is the major Cx protein expressed in the human mammary gland and is up-regulated during pregnancy while remaining elevated throughout lactation. It is currently unknown if patients with loss-of-function Cx26 mutations that result in hearing loss and skin diseases have a greater susceptibility to impaired breast development. To investigate if Cx26 plays a critical role in mammary gland development and differentiation, a novel Cx26 conditional knockout mouse model was generated by crossing Cx26fl/fl mice with mice expressing Cre under the β-Lactoglobulin promoter. Conditional knockdown of Cx26 from the mammary gland resulted in a dramatic reduction in detectable gap junction plaques confirmed by a significant ∼65-70% reduction in Cx26 mRNA and protein throughout parturition and lactation. Interestingly, this reduction was accompanied by a decrease in mammary gland Cx30 gap junction plaques at parturition, while no change was observed for Cx32 or Cx43. Whole mount, histological and immunofluorescent assessment of breast tissue revealed comparatively normal lobuloalveolar development following pregnancy in the conditionally knockdown mice compared to control mice. In addition, glands from genetically-modified mice were capable of producing milk proteins that were evident in the lumen of alveoli and ducts at similar levels as controls, suggesting normal gland function. Together, our results suggest that low levels of Cx26 expression throughout pregnancy and lactation, and not the physiological surge in Cx26, is sufficient for normal gland development and function. 相似文献
6.
This study aimed to establish yak mammary epithelial cells (YMECs) for an in vitro model of yak mammary gland biology. The primary culture of YMECs was obtained from mammary gland tissues of lactating yak and then characterized using immunocytochemistry, RT-PCR, and western blot analysis. Whether foreign genes could be transfected into the YMECs were examined by transfecting the EGFP gene into the cells. Finally, the effect of Staphylococcus aureus infection on YMECs was determined. The established YMECs retained the mammary epithelial cell characteristics. A spontaneously immortalized yak mammary epithelial cell line was established and could be continuously subcultured for more than 60 passages without senescence. The EGFP gene was successfully transferred into the YMECs, and the transfected cells could be maintained for a long duration in the culture by continuous subculturing. The cells expressed more antimicrobial peptides upon S.aureus invasion. Therefore, the established cell line could be considered a model system to understand yak mammary gland biology. 相似文献
7.
Jagadeesh Janjanam Surender Singh Manoj K. Jena Nishant Varshney Srujana Kola Sudarshan Kumar Jai K. Kaushik Sunita Grover Ajay K. Dang Manishi Mukesh B. S. Prakash Ashok K. Mohanty 《PloS one》2014,9(8)
Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling. 相似文献
8.
成本费用控制是医院财务内部控制一项重要内容,对于医院经济活动的顺利开展和内部控制的规范具有重要意义。将PDCA循环引入内部控制体系中的成本费用控制,寻找和管理关键控制点,抓住问题的本质,制定相应对策措施。
相似文献9.
实时荧光定量PCR是目前基因表达量差异分析的首选方法之一。虽然其操作简单,但如何保证其定量结果的可信度一直是个难题,特别是针对只有20多个碱基的miRNA的定量分析。本研究以水稻miR408在不同组织中的表达差异为实例,系统地优化和阐述了有关荧光定量的新标准及要求。结果表明,引物的浓度对于荧光定量PCR体系的优化至关重要。 相似文献
10.
11.
Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. 相似文献
12.
Ludovic Barault Rachel E. Ellsworth Holly R. Harris Allyson L. Valente Craig D. Shriver Karin B. Michels 《PloS one》2013,8(2)
There is growing interest in identifying surrogate tissues to identify epimutations in cancer patients since primary target tissues are often difficult to obtain. Methylation patterns at imprinted loci are established during gametogenesis and post fertilization and their alterations have been associated with elevated risk of cancer. Methylation at several imprinted differentially methylated regions (GRB10 ICR, H19 ICR, KvDMR, SNRPN/SNURF ICR, IGF2 DMR0, and IGF2 DMR2) were analyzed in DNA from leukocytes and mammary tissue (normal, benign diseases, or malignant tumors) from 87 women with and without breast cancer (average age of cancer patients: 53; range: 31–77). Correlations between genomic variants and DNA methylation at the studied loci could not be assessed, making it impossible to exclude such effects. Methylation levels observed in leukocyte and mammary tissue DNA were close to the 50% expected for monoallellic methylation. While no correlation was observed between leukocyte and mammary tissue DNA methylation for most of the analyzed imprinted genes, Spearman''s correlations were statistically significant for IGF2 DMR0 and IGF2 DMR2, although absolute methylation levels differed. Leukocyte DNA methylation levels of selected imprinted genes may therefore serve as surrogate markers of DNA methylation in cancer tissue. 相似文献
13.
远距离转录调控是指增强子、沉默子和隔离子等顺式作用元件参与的组织和发育特异性基因的表达调控。其调控元件可位于距转录基因很远的DNA区域,甚至分布于邻近基因内含子中。随着人类基因组计划和各种模式生物测序工作的完成,为大规模快速查找远距离调控元件提供了新的手段。由于基因组结构的复杂性,很难建立统一的基因表达调控模型,目前认为启动子与增强子的相互作用是组织和发育特异性基因成功表达的关键。另外,远距离转录调控机制一旦破坏还将导致疾病的发生。 相似文献
14.
Laura A. Velázquez-Villegas Armando R. Tovar Adriana M. López-Barradas Nimbe Torres 《PloS one》2013,8(7)
During gestation and lactation, a series of metabolic changes that are affected by the diet occurs in various organs of the mother. However, little is known about how the dietary protein (DP)/carbohydrate (DCH) ratio regulates the expression of metabolic genes in the mother. Therefore, the purpose of this work was to study the effect of consuming different percentages of DP/DCH, specifically 10/73, 20/63 and 30/53%, on the expression of genes involved in lipogenesis and protein synthesis in the mammary gland, liver and adipose tissue during gestation and lactation in dams. While the amount of weight gained during gestation was similar for all groups, only dams fed with 30/53% DP/DCH maintained their weight during lactation. In the mammary gland, the expression of the genes involved in lipogenesis, specifically SREBP1 and FAS, was dramatically increased, and the expression of the genes involved in protein synthesis, such as mTOR1, and the phosphorylation of its target protein, S6K, were also increased throughout pregnancy and lactation, regardless of the concentration of DP/DCH. In the liver and adipose tissue, the expression of the genes and proteins involved in lipid metabolism was dependent on the proportion of DP/DCH. The consumption of a low-protein/high-carbohydrate diet increased the expression of lipogenic genes in the liver and adipose tissue and the amount of lipid deposition in the liver. Conversely, the consumption of a high-protein/low-carbohydrate diet increased the expression of genes involved in amino acid oxidation in the liver during gestation. The metabolic adaptations reflected by the changes in the expression of metabolic genes indicate that the mammary gland has a priority for milk synthesis, whereas the adaptations in the liver and adipose tissue are responsible for providing nutrients to the mammary gland to sustain milk synthesis. 相似文献
15.
Hop plant (Humulus lupulus L.), cultivated primarily for its use in the brewing industry, is faced with a variety of diseases, including severe vascular diseases, such as Verticillium wilt, against which no effective protection is available. The understanding of disease resistance with tools such as differentially expressed gene studies is an important objective of plant defense mechanisms. In this study, we evaluated twenty-three reference genes for RT-qPCR expression studies on hop under biotic stress conditions. The candidate genes were validated on susceptible and resistant hop cultivars sampled at three different time points after infection with Verticillium albo-atrum. The stability of expression and the number of genes required for accurate normalization were assessed by three different Excel-based approaches (geNorm v.3.5 software, NormFinder, and RefFinder). High consistency was found among them, identifying the same six best reference genes (YLS8, DRH1, TIP41, CAC, POAC and SAND) and five least stably expressed genes (CYCL, UBQ11, POACT, GAPDH and NADH). The candidate genes in different experimental subsets/conditions resulted in different rankings. A combination of the two best reference genes, YLS8 and DRH1, was used for normalization of RT-qPCR data of the gene of interest (PR-1) implicated in biotic stress of hop. We outlined the differences between normalized and non-normalized values and the importance of RT-qPCR data normalization. The high correlation obtained among data standardized with different sets of reference genes confirms the suitability of the reference genes selected for normalization. Lower correlations between normalized and non-normalized data may reflect different quantity and/or quality of RNA samples used in RT-qPCR analyses. 相似文献
16.
17.
The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae) have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1). Two widely applied algorithms (GeNorm and Normfinder) were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body). The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2), which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1) was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold). The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body) was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge. 相似文献
18.
19.
《Cell cycle (Georgetown, Tex.)》2013,12(7):799-803
Suppressors of cytokine signaling (SOCS) proteins are critical regulators of cytokinemediatedresponses in diverse tissues. In the mammary gland, signal transductionpathways elicited by cytokines and hormones have been shown to control distinct stagesof development. In vivo evidence points to essential roles for Socs1 and Socs2 as keyphysiological attenuators of prolactin receptor (PRLR) signaling during pregnancy andlactogenesis. Recently, Socs3 has been shown to be a critical regulator of involution, thecoordinated process of programmed cell death and tissue remodelling that is initiatedafter the cessation of lactation. This review will predominantly focus on the antiapoptoticfunction of Socs3 during mammary gland involution in which it acts as a keyattenuator of Stat3-mediated signal transduction. Perturbation of this pathway leads to anincrease in the levels of c-myc and its likely target genes, p53, bax and E2F-1, providingevidence that c-myc is a central effector of apoptosis during involution. 相似文献