首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Elevated levels of inflammatory molecules are key players in muscle wasting/atrophy leading to human morbidity. TNFα is a well-known pro-inflammatory cytokine implicated in the pathogenesis of muscle wasting under diverse clinical settings. S-allyl cysteine (SAC), an active component of garlic (Allium sativum), has established anti-oxidant and anti-inflammatory effects in various cell types. However, the impact of SAC on skeletal muscle pathology remains unexplored. Owing to the known anti-inflammatory properties of SAC, we investigated whether pre-treatment with SAC has a protective role in TNFα-induced atrophy in cultured myotubes.

Methods and results

C2C12 myotubes were treated with TNFα (100 ng/ml) in the presence or absence of SAC (0.01 mM). TNFα treatment induced atrophy in myotubes by up-regulating various proteolytic systems i.e. cathepsin L, calpain, ubiquitin-proteasome E3-ligases (MuRF1/atrogin1), caspase 3 and autophagy (Beclin1/LC3B). TNFα also induced the activation of NFκB by stimulating the degradation of IκBα (inhibitor of NFκB), in myotubes. The alterations in proteolytic systems likely contribute to the degradation of muscle-specific proteins and reduce the myotube length, diameter and fusion index. The SAC supplementation significantly impedes TNFα-induced protein loss and protects myotube morphology by suppressing protein catabolic systems and endogenous level of inflammatory molecules namely TNFα, IL-6, IL-1β, TNF-like weak inducer of apoptosis (TWEAK), fibroblast growth factor-inducible 14 (Fn14) and Nox.

Conclusion and general significance

Our findings reveal anti-atrophic role for SAC, as it prevents alterations in protein metabolism and protects myotubes by regulating the level of inflammatory molecules and multiple proteolytic systems responsible for muscle atrophy.  相似文献   

3.
Myofiber atrophy is the final outcome of muscle wasting induced by catabolic factors such as glucocorticoids and thyroid hormones. We set up an in vitro system to define the catabolic reaction based on myotube atrophy. Both mouse C2C12 and rat L6 cells were used. C2C12 myotube formation was improved by replacing horse serum with the serum substitute Ultroser G. A new method was developed to quantify size changes of large (0.5–1 mm) myotubes only, excluding remaining myoblasts and small myotubes. Dexamethasone reduced myotube size by 30% in L6 but not in C2C12 myotubes. Expression of the glucocorticoid receptor was twofold higher in L6 myotubes than in C2C12 myotubes. In both cell lines, 3,3',5-triiodo-L-thyronine (T3) did not induce a significant size reduction. Expression of the major T3 receptor (T3R1) was higher in L6 myotubes. We investigated whether the changes in myotube size are related to changes in atrogin-1 expression, as this enzyme is thought to be a key factor in the initiation of muscle atrophy. Dexamethasone induced a twofold increase of atrogin-1 mRNA; again, only L6 myotubes were susceptible. Interestingly, atrogin-1 expression in Ultroser G-fused C2C12 myotubes was lower than that in horse serum-fused myotubes. Furthermore, dexamethasone treatment increased atrogin-1 expression only in horse serum-fused myotubes but not in Ultroser G-fused myotubes. Ultroser G-induced fusion may result in atrophy-resistant C2C12 myotubes. Therefore, C2C12 myotubes offer an ideal system in which to study skeletal muscle atrophy because, depending on differentiation conditions, C2C12 cells produce atrophy-inducible and atrophy-resistant myotubes. glucocorticoids; nuclear receptors; atrogin  相似文献   

4.
Doxorubicin, a commonly prescribed chemotherapeutic agent, causes skeletal muscle wasting in cancer patients undergoing treatment and increases mitochondrial reactive oxygen species (ROS) production. ROS stimulate protein degradation in muscle by activating proteolytic systems that include caspase-3 and the ubiquitin-proteasome pathway. We hypothesized that doxorubicin causes skeletal muscle catabolism through ROS, causing upregulation of E3 ubiquitin ligases and caspase-3. We tested this hypothesis by exposing differentiated C2C12 myotubes to doxorubicin (0.2 μM). Doxorubicin decreased myotube width 48 h following exposure, along with a 40-50% reduction in myosin and sarcomeric actin. Cytosolic oxidant activity was elevated in myotubes 2 h following doxorubicin exposure. This increase in oxidants was followed by an increase in the E3 ubiquitin ligase atrogin-1/muscle atrophy F-box (MAFbx) and caspase-3. Treating myotubes with SS31 (opposes mitochondrial ROS) inhibited expression of ROS-sensitive atrogin-1/MAFbx and protected against doxorubicin-stimulated catabolism. These findings suggest doxorubicin acts via mitochondrial ROS to stimulate myotube atrophy.  相似文献   

5.

Background

Toll-like receptor 4 (TLR4) contributes to the development of NAFLD (nonalcoholic fatty liver disease) and MetS (metabolic syndrome). It is unclear whether anti-diabetic metformin affects TLR4 expression on blood monocytes, thereby protecting or improving inflammatory parameters. Therefore, we investigated TLR4 in patients with NAFLD meeting different sets of MetS criteria and linked the results with the disease burden.

Methods

70 subjects were characterized and divided into three groups: (I) healthy individuals, (II) nonobese with NAFLD and without MetS, and (III) prediabetic, obese with NAFLD and MetS. We determined the concentrations of IL-1β, IL-6, TNFα, and monocyte TLR4 levels in fresh blood as well as in blood cultures with or without metformin supplementation.

Results

The characteristics of the study groups revealed a significant association between NAFLD and BMI, MetS and inflammatory parameters, and TLR4. In ex vivo studies, 100 μM of metformin decreased the TLR4 level by 19.9% (II group) or by 35% (III group) as well as IL-1β and TNFα production. A stepwise multiple regression analysis highlighted a strong effect of metformin on attenuation of the link between TLR4 and NAFLD, and TNFα.

Conclusion

We concluded that, by attenuation of the blood monocyte TLR4 level, metformin reduced their inflammatory potential—critical after recruitment these cells into liver. However, this finding should be confirmed after in vivo metformin administration.  相似文献   

6.

Objectives

Pro-inflammatory cytokines have been noted to increase following exercise but their relationship to exercise-induced cardiac dysfunction has not previously been investigated. We sought to evaluate whether exercise-induced cardiac dysfunction was associated with increases in cytokines, particularly the pro-inflammatory cytokines IL-1β, IL-12p70 and TNFα, which have been most implicated in cardiac pathology.

Methods

40 well-trained endurance athletes underwent evaluation prior to and immediately following one of four endurance sporting events ranging from 3 to 11 hours duration. Cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12p70 and TNFα) were analyzed by flow cytometry from serum samples collected within 50 minutes of race completion. Cardiac troponin (cTnI) and B-type natriuretic peptide were combined with an echocardiographic assessment of cardiac function, and a composite of cTnI > 0.04 μg/L, BNP increase > 10 ng/L and a decrease in right ventricular ejection (RVEF) > 10% were prospectively defined as evidence of myocardial dysfunction.

Results

Relative to baseline, IL-6 IL-8 and IL-10 increased 8.5-, 2.9-, and 7.1-fold, respectively, P<0.0001. Thirty-one (78%), 19 (48%) and 18 (45%) of the athletes met the pre-specified criteria for significant cTnI, BNP and RVEF changes, respectively. TNFα, IL-12p70 were univariate predictors of ΔRVEF and ΔBNP whilst none of the anti-inflammatory cytokines were significantly associated with these measures. Ten athletes (25%, all athletes competing in the endurance event of longest duration) met criteria for exercise-induced myocardial dysfunction. In these 10 athletes with myocardial dysfunction, as compared to those without, there was significantly greater post-race expression of the pro-inflammatory cytokines IL-12p70 (8.1±3.8pg/ml vs. 2.5±2.6pg/ml, P<0.0001) and TNFα (6.5±3.1pg/ml vs. 2.0±2.5pg/ml, P<0.0001).

Conclusion

Cardiac dysfunction following intense endurance exercise was associated with increased expression of pro-inflammatory cytokines. This does not prove a causal relationship but provides rationale for further investigations into whether inflammation mediates exercise-induced myocardial dysfunction.  相似文献   

7.

Background and Aim

In health, TLR signaling protects the intestinal epithelial barrier and in disease, aberrant TLR signaling stimulates diverse inflammatory responses. Association of TLR polymorphisms is ethnicity dependent but how they impact the complex pathogenesis of IBD is not clearly defined. So we propose to study the status of polymorphisms in TLR family of genes and their effect on cytokines level in UC patients.

Methods

The genotypes of the six loci TLR1-R80T, TLR2-R753Q, TLR3-S258G, TLR5-R392X, TLR5-N592S and TLR6-S249P were determined in 350 controls and 328 UC patients by PCR-RFLP and sequencing. Cytokine levels were measured by ELISA in blood plasma samples. Data were analyzed statistically by SPSS software.

Results

TLR5 variants R392X and N592S showed significant association (p = 0.007, 0.021) with UC patients but TLR 1, 2, 3, 6 variants did not show any association. Unlike other studies carried out in different ethnic groups, TLR 6 (S249P) SNP was universally present in our population irrespective of disease. Genotype-phenotype correlation analysis revealed that the patients having combination of multiple SNPs both in TLR5 and TLR4 gene suffered from severe disease condition and diagnosed at an early age. The level of TNFα (p = 0.004), IL-6 (p = 0.0001) and IFNγ (p = 0.006) significantly increased in patients as compared to controls having wild genotypes for the studied SNPs. However, there was decreased level of TNFα (p = 0.014), IL-6 (p = 0.028) and IFNγ (p = 0.001) in patients carrying TLR5-R392X variant as compared to wild type patients. Patients carrying two simultaneous SNPs D299G in TLR4 gene and N592S in TLR5 gene showed significant decrease in the levels of TNFα (p = 0.011) and IFNγ (p = 0.016).

Conclusion

Polymorphisms in TLR 5 genes were significantly associated with the UC in North Indian population. The cytokine level was significantly modulated in patients with different genotypes of TLR4 and TLR5 SNPs.  相似文献   

8.
9.
10.
11.

Introduction

Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation.

Methods

Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers.

Results

Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86.

Conclusion

Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC.  相似文献   

12.

Introduction

Alcohol-induced neuroinflammation is mediated by pro-inflammatory cytokines and chemokines including tumor necrosis factor-α (TNFα), monocyte chemotactic protein-1 (MCP1) and interleukin-1-beta (IL-1β). Toll-like receptor-4 (TLR4) pathway induced nuclear factor-κB (NF-κB) activation is involved in the pathogenesis of alcohol-induced neuroinflammation. Inflammation is a highly regulated process. Recent studies suggest that microRNAs (miRNAs) play crucial role in fine tuning gene expression and miR-155 is a major regulator of inflammation in immune cells after TLR stimulation.

Aim

To evaluate the role of miR-155 in the pathogenesis of alcohol-induced neuroinflammation.

Methods

Wild type (WT), miR-155- and TLR4-knockout (KO) mice received 5% ethanol-containing or isocaloric control diet for 5 weeks. Microglia markers were measured by q-RTPCR; inflammasome activation was measured by enzyme activity; TNFα, MCP1, IL-1β mRNA and protein were measured by q-RTPCR and ELISA; phospho-p65 protein and NF-κB were measured by Western-blotting and EMSA; miRNAs were measured by q-PCR in the cerebellum. MiR-155 was measured in immortalized and primary mouse microglia after lipopolysaccharide and ethanol stimulation.

Results

Chronic ethanol feeding up-regulated miR-155 and miR-132 expression in mouse cerebellum. Deficiency in miR-155 protected mice from alcohol-induced increase in inflammatory cytokines; TNFα, MCP1 protein and TNFα, MCP1, pro-IL-1β and pro-caspase-1 mRNA levels were reduced in miR-155 KO alcohol-fed mice. NF-κB was activated in WT but not in miR-155 KO alcohol-fed mice. However increases in cerebellar caspase-1 activity and IL-1β levels were similar in alcohol-fed miR-155-KO and WT mice. Alcohol-fed TLR4-KO mice were protected from the induction of miR-155. NF-κB activation measured by phosphorylation of p65 and neuroinflammation were reduced in alcohol-fed TLR4-KO compared to control mice. TLR4 stimulation with lipopolysaccharide in primary or immortalized mouse microglia resulted in increased miR-155.

Conclusion

Chronic alcohol induces miR-155 in the cerebellum in a TLR4-dependent manner. Alcohol-induced miR-155 regulates TNFα and MCP1 expression but not caspase-dependent IL-1β increase in neuroinflammation.  相似文献   

13.
Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.  相似文献   

14.

Objective

Intervertebral disc (IVD) degeneration is an important contributor to the development of back pain, and a key factor relating pain and degeneration are the presence of pro-inflammatory cytokines and IVD motion. There is surprisingly limited understanding of how mechanics and inflammation interact in the IVD. This study investigated interactions between mechanical loading and pro-inflammatory cytokines in a large animal organ culture model to address fundamental questions regarding (i.) how inflammatory mediators arise within the IVD, (ii.) how long inflammatory mediators persist, and (iii.) how inflammatory mediators influence IVD biomechanics.

Methods

Bovine caudal IVDs were cultured for 6 or 20-days under static &amp; dynamic loading with or without exogenous TNFα in the culture medium, simulating a consequence of inflammation of the surrounding spinal tissues. TNFα transport within the IVD was assessed via immunohistochemistry. Changes in IVD structural integrity (dimensions, histology &amp; aggrecan degradation), biomechanical behavior (Creep, Recovery &amp; Dynamic stiffness) and pro-inflammatory cytokines in the culture medium (ELISA) were assessed.

Results

TNFα was able to penetrate intact IVDs when subjected to dynamic loading but not static loading. Once transported within the IVD, pro-inflammatory mediators persisted for 4–8 days after TNFα removal. TNFα exposure induced changes in IVD biomechanics (reduced diurnal displacements &amp; increased dynamic stiffness).

Discussion

This study demonstrated that exposure to TNFα, as might occur from injured surrounding tissues, can penetrate healthy intact IVDs, induce expression of additional pro-inflammatory cytokines and alter IVD mechanical behavior. We conclude that exposure to pro-inflammatory cytokine may be an initiating event in the progression of IVD degeneration in addition to being a consequence of disease.  相似文献   

15.

Objective

Patients with rheumatoid arthritis (RA) have altered circadian rhythm of circulating serum cortisol, melatonin and IL-6, as well as disturbance in the expression of clock genes ARNTL2 and NPAS2. In humans, TNFα increases the expression ARNTL2 and NPAS2 but paradoxically suppresses clock output genes DPB and PER3. Our objective was to investigate the expression of direct clock suppressors DEC1 and DEC2 (BHLHE 40 and 41 proteins) in response to TNFα and investigate their role during inflammation.

Methods

Cultured primary fibroblasts were stimulated with TNFα. Effects on DEC2 were studied using RT-qPCR and immunofluorescence staining. The role of NF-κB in DEC2 increase was analyzed using IKK-2 specific inhibitor IMD-0354. Cloned DEC2 was transfected into HEK293 cells to study its effects on gene expression. Transfections into primary human fibroblasts were used to confirm the results. The presence of DEC2 was analyzed in (RA) and osteoarthritis (OA) synovial membranes by immunohistochemistry.

Results

TNFα increased DEC2 mRNA and DEC2 was mainly detected at nuclei after the stimulus. The effects of TNFα on DEC2 expression were mediated via NF-κB. Overexpression, siRNA and promoter activity studies disclosed that DEC2 directly regulates IL-1β, in both HEK293 cells and primary human fibroblasts. DEC2 was increased in synovial membrane in RA compared to OA.

Conclusion

Not only ARNTL2 and NPAS2 but also DEC2 is regulated by TNFα in human fibroblasts. NF-κB mediates the effect on DEC2, which upregulates IL-1β. Circadian clock has a direct effect on inflammation in human fibroblasts.  相似文献   

16.
17.

Introduction and Aims

Toll-like receptor 4 and proinflammatory cytokines play a central role in the progression of nonalcoholic fatty liver disease. We investigated IL-1, IL-6 and TNFα production and toll-like receptor 4 in both—obese and lean patients with non-alcoholic fatty liver disease who met different sets of metabolic syndrome criteria and linked the results with the disease burden.

Materials and Methods

95 subjects were divided into four groups depending on the following criteria: presence or absence of metabolic syndrome and/or non-alcoholic fatty liver disease, glucose tolerance (prediabetes or normoglycemia) and BMI value (obese or lean). We determined the levels of IL-1β, IL-6, TNFα, and monocyte toll-like receptor 4 expression in fresh blood as well as in blood cultures treated with lipopolysaccharide with or without metformin, alphaketoglutarate or phosphatidylcholine supplementation.

Results

The blood leukocytes of patients with non-alcoholic fatty liver disease are hypersensitive to lipopolysaccharide treatment and produce elevated levels of pro-inflammatory cytokines in response to ex vivo treatment with lipopolysaccharide. Moreover, they overexpress toll-like receptor-4. Hyperreactivity was typical mainly for obese patients with non-alcoholic fatty liver disease together with metabolic syndrome and decreased with the severity of disease. Metformin was the most effective in attenuation of hyperreactivity in all groups of patients with non-alcoholic fatty liver disease, but in obese patients the effectiveness of metformin was weaker than in lean. The reduction of cytokine level by metformin was accompanied by the decrease in toll-like receptor-4 expression. phosphatidylcholine also attenuated hyperreactivity to lipopolysaccharide but mainly in obese patients. Alpha ketoglutarate did not modulate cytokines’ level and toll-like receptor 4 expression in non-alcoholic fatty liver disease patients.

Conclusions

Metformin and phosphatidylcholine attenuated lipopolysaccharide induced toll-like receptor 4 overexpression and overproduction of pro-inflammatory cytokines; however, their efficacy depended on combined presence of non-alcoholic fatty liver disease, metabolic syndrome and obesity.  相似文献   

18.

Objective

Fibromyalgia is associated with central hyperexcitability, but it is suggested that peripheral input is important to maintain central hyperexcitability. The primary aim was to investigate the levels of pro-inflammatory cytokines released in the vastus lateralis muscle during repetitive dynamic contractions of the quadriceps muscle in patients with fibromyalgia and healthy controls. Secondarily, to investigate if the levels of pro-inflammatory cytokines were correlated with pain or fatigue during these repetitive dynamic contractions.

Material and Methods

32 women with fibromyalgia and 32 healthy women (controls) participated in a 4 hour microdialysis session, to sample IL-1β, IL-6, IL-8, and TNF from the most painful point of the vastus lateralis muscle before, during and after 20 minutes of repeated dynamic contractions. Pain (visual analogue scale; 0–100) and fatigue Borg’s Rating of Perceived Exertion Scale; 6–20) were assessed before and during the entire microdialysis session.

Results

The repetitive dynamic contractions increased pain in the patients with fibromyalgia (P < .001) and induced fatigue in both groups (P < .001). Perceived fatigue was significantly higher among patients with fibromyalgia than controls (P < .001). The levels of IL-1β did not change during contractions in either group. The levels of TNF did not change during contractions in patients with fibromyalgia, but increased in controls (P < .001) and were significantly higher compared to patients with fibromyalgia (P = .033). The levels of IL-6 and IL-8 increased in both groups alike during and after contractions (P’s < .001). There were no correlations between pain or fatigue and cytokine levels after contractions.

Conclusion

There were no differences between patients with fibromyalgia and controls in release of pro-inflammatory cytokines, and no correlations between levels of pro-inflammatory cytokines and pain or fatigue. Thus, this study indicates that IL-1β, IL-6, IL-8, and TNF do not seem to play an important role in maintenance of muscle pain in fibromyalgia.  相似文献   

19.
Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A   总被引:2,自引:0,他引:2  
Induced secretion of acute-phase serum amyloid A (SAA) is a host response to danger signals and a clinical indication of inflammation. The biological functions of SAA in inflammation have not been fully defined, although recent reports indicate that SAA induces proinflammatory cytokine expression. We now show that TLR2 is a functional receptor for SAA. HeLa cells expressing TLR2 responded to SAA with potent activation of NF-kappaB, which was enhanced by TLR1 expression and blocked by the Toll/IL-1 receptor/resistance (TIR) deletion mutants of TLR1, TLR2, and TLR6. SAA stimulation led to increased phosphorylation of MAPKs and accelerated IkappaBalpha degradation in TLR2-HeLa cells, and results from a solid-phase binding assay showed SAA interaction with the ectodomain of TLR2. Selective reduction of SAA-induced gene expression was observed in tlr2-/- mouse macrophages compared with wild-type cells. These results suggest a potential role for SAA in inflammatory diseases through activation of TLR2.  相似文献   

20.

Background

Toll-like receptors (TLRs) are expressed in immune cells and hepatocytes. We examined whether hepatic Toll-like receptor 4 (TLR4) is involved in the acute hepatic injury caused by the administration of lipopolysaccharide (LPS) (septic shock model).

Methods

Wild type (WT), TLR4-deficient and chimera mice underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the liver or in the immune-hematopoietic system. Mice were injected with LPS and sacrificed 4 hours later.

Results

Compared to TLR4 deficient mice, WT mice challenged with LPS displayed increased serum liver enzymes and hepatic cellular inflammatory infiltrate together with increased serum and hepatic levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNFα) ,Up-regulation of hepatic mRNA encoding TLR4, IκB and c-jun expressions. TLR4 mutant mice transplanted with WT bone marrow were more protected than WT chimeric mice bearing TLR4 mutant hemopoietic cells from LPS, as seen by IL-1β and TNFα levels. We then used hepatocytes (Huh7) and macrophages from monocytic cell lines to detect TLR mRNA expression. Macrophages expressed a significantly higher level of TLR4 mRNA and TLR2 (more than 3000- and 8000-fold respectively) compared with the hepatocyte cell line. LPS administration induced TLR4 activation in a hepatocyte cell line in a dose dependent manner while TLR2 mRNA hardly changed.

Conclusions

These results suggest that TLR4 activation of hepatocytes participate in the immediate response to LPS induced hepatic injury. However, in this response, the contribution of TLR4 on bone marrow derived cells is more significant than those of the hepatocytes. The absence of the TLR4 gene plays a pivotal role in reducing hepatic LPS induced injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号