首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the molecular basis of intracellular Ca2+ handling in human colon carcinoma cells (HT29) versus normal human mucosa cells (NCM460) and its contribution to cancer features. We found that Ca2+ stores in colon carcinoma cells are partially depleted relative to normal cells. However, resting Ca2+ levels, agonist-induced Ca2+ increases, store-operated Ca2+ entry (SOCE), and store-operated currents (ISOC) are largely enhanced in tumor cells. Enhanced SOCE and depleted Ca2+ stores correlate with increased cell proliferation, invasion, and survival characteristic of tumor cells. Normal mucosa cells displayed small, inward Ca2+ release-activated Ca2+ currents (ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells showed mixed currents composed of enhanced ICRAC plus a nonselective ISOC mediated by TRPC1. Tumor cells display increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and STIM1. In contrast, STIM2 protein was nearly depleted in tumor cells. Silencing data suggest that enhanced ORAI1 and TRPC1 contribute to enhanced SOCE and differential store-operated currents in tumor cells, whereas ORAI2 and -3 are seemingly less important. In addition, STIM2 knockdown decreases SOCE and Ca2+ store content in normal cells while promoting apoptosis resistance. These data suggest that loss of STIM2 may underlie Ca2+ store depletion and apoptosis resistance in tumor cells. We conclude that a reciprocal shift in TRPC1 and STIM2 contributes to Ca2+ remodeling and tumor features in colon cancer.  相似文献   

2.
Ca2+ release-activated Ca2+ (CRAC) channels are intimately linked with health and disease. The gene encoding the CRAC channel, ORAI1, was discovered in part by genetic analysis of patients with abolished CRAC channel function. And patients with autosomal recessive loss-of-function (LOF) mutations in ORAI1 and its activator stromal interaction molecule 1 (STIM1) that abolish CRAC channel function and store-operated Ca2+ entry (SOCE) define essential functions of CRAC channels in health and disease. Conversely, gain-of-function (GOF) mutations in ORAI1 and STIM1 are associated with tubular aggregate myopathy (TAM) and Stormorken syndrome due to constitutive CRAC channel activation. In addition, genetically engineered animal models of ORAI and STIM function have provided important insights into the physiological and pathophysiological roles of CRAC channels in cell types and organs beyond those affected in human patients. The picture emerging from this body of work shows CRAC channels as important regulators of cell function in many tissues, and as potential drug targets for the treatment of autoimmune and inflammatory disorders.  相似文献   

3.
Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent evidence indicates that SOCE plays an important role in both muscle development/growth and fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and gain-of-function mutations in STIM1 and ORAI1 result in an eclectic array of disorders with clinical myopathy as central defining component. Despite differences in clinical phenotype, all STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.  相似文献   

4.
5.
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.  相似文献   

6.
Store-operated Ca2+ entry (SOCE) is a universal mechanism to increase intracellular Ca2+ concentrations in non-excitable cells. It is initiated by the depletion of ER Ca2+ stores, activation of stromal interaction molecule (STIM) 1 and gating of the Ca2+ release activated Ca2+ (CRAC) channel ORAI1 in the plasma membrane. We identified a minimal activation domain in the cytoplasmic region of STIM1 (CCb9) which activated Ca2+ influx and CRAC currents (ICRAC) in the absence of store depletion similar to but more potently than the entire C terminus of STIM1. A STIM1 fragment (CCb7) that is longer by 31 amino acids than CCb9 at its C terminal end showed reduced ability to constitutively activate ICRAC consistent with our observation that CCb9 but not CCb7 efficiently colocalized with and bound to ORAI1. Intracellular application of a 31 amino acid peptide contained in CCb7 but not CCb9 inhibited constitutive and store-dependent CRAC channel activation. In summary, these findings suggest that CCb9 represents a minimal ORAI1 activation domain within STIM1 that is masked by an adjacent 31 amino acid peptide preventing efficient CRAC channel activation in cells with replete Ca2+ stores.  相似文献   

7.
ORAI1 is established as an essential component of Ca2+ release-activated Ca2+ (CRAC) channel which mediates store-operated Ca2+ entry (SOCE). However, the contributions of ORAI2 and ORAI3 to SOCE are not understood. We highlight a recent study which shows that ORAI proteins form heteromeric channels which tune SOCE over a range of stimulus intensities.  相似文献   

8.
Orai proteins form highly selective Ca2+ release-activated channels (CRACs). They play a critical role in store-operated Ca2+ entry (SOCE; i.e., the influx of external Ca2+ that is induced by the depletion of endoplasmic reticulum Ca2+ stores). Of the three Orai homologs that are present in mammals (Orai1–3), the physiological function of Orai1 is the best described. CRACs are formed by both homomeric assemblies and heteromultimers of Orais. Orai1 and Orai2 can form heteromeric channels that differ in conductivity during SOCE, depending on their Orai1-to-Orai2 ratio. The present study explored the potential consequences of ORAI1 overexpression in neurons where the dominant isoform is Orai2. We established the Tg(ORAI1)Ibd transgenic mouse line that overexpresses ORAI1 in brain neurons. We observed seizure-like symptoms in aged (≥15-month-old) female mice but not in males of the same age. The application of kainic acid and bicuculline to slices that were isolated from 8-month-old (±1 month) female Tg(ORAI1)Ibd mice revealed a significantly lower frequency of interictal bursts compared with samples that were isolated from wildtype mice. No differences were observed in male mice of a similar age. A battery of behavioral tests showed that context recognition decreased only in female transgenic mice. The phenotype that was observed in female mice suggests that ORAI1 overexpression may affect neuronal activity in a sex-dependent manner.This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

9.
10.
Enamel mineralization relies on Ca2+ availability provided by Ca2+ release activated Ca2+ (CRAC) channels. CRAC channels are modulated by the endoplasmic reticulum Ca2+ sensor STIM1 which gates the pore subunit of the channel known as ORAI1, found the in plasma membrane, to enable sustained Ca2+ influx. Mutations in the STIM1 and ORAI1 genes result in CRAC channelopathy, an ensemble of diseases including immunodeficiency, muscular hypotonia, ectodermal dysplasia with defects in sweat gland function and abnormal enamel mineralization similar to amelogenesis imperfecta (AI). In some reports, the chief medical complain has been the patient’s dental health, highlighting the direct and important link between CRAC channels and enamel. The reported enamel defects are apparent in both the deciduous and in permanent teeth and often require extensive dental treatment to provide the patient with a functional dentition. Among the dental phenotypes observed in the patients, discoloration, increased wear, hypoplasias (thinning of enamel) and chipping has been reported. These findings are not universal in all patients. Here we review the mutations in STIM1 and ORAI1 causing AI-like phenotype, and evaluate the enamel defects in CRAC channel deficient mice. We also provide a brief overview of the role of CRAC channels in other mineralizing systems such as dentine and bone.  相似文献   

11.
Store-operated calcium entry (SOCE) is the predominant Ca2+ entry mechanism in nonexcitable cells and controls a variety of physiological and pathological processes. Although significant progress has been made in identifying the components required for SOCE, the molecular mechanisms underlying it are elusive. The present study provides evidence for a direct involvement of kinase suppressor of Ras 2 (KSR2) in SOCE. Using lymphocytes and fibroblasts from ksr2−/− mice and shKSR2-depleted cells, we find that KSR2 is critical for the elevation of cytosolic Ca2+ concentration. Specifically, our results show that although it is dispensable for Ca2+-store depletion, KSR2 is required for optimal calcium entry. We observe that KSR2 deficiency affects stromal interaction molecule 1 (STIM1)/ORAI1 puncta formation, which is correlated with cytoskeleton disorganization. Of interest, we find that KSR2-associated calcineurin is crucial for SOCE. Blocking calcineurin activity impairs STIM1/ORAI1 puncta-like formation and cytoskeleton organization. In addition, we observe that calcineurin activity and its role in SOCE are both KSR2 dependent.  相似文献   

12.
Kawasaki disease (KD) is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS) in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs) detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit) gene: rs1873668 (p = 9.52×10−5), rs4243399 (p = 9.93×10−5), and rs16849083 (p = 9.93×10−5). We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1) gene (rs149481, pbest = 4.61×10−5). Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667) clustered in an area containing immunoglobulin heavy chain variable regions genes, with pbest-values between 2.08×10−5 and 8.93×10−6, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD.  相似文献   

13.
Ca2+ homeostasis controls a diversity of cellular processes including proliferation and apoptosis. A very important aspect of Ca2+ signaling is how different Ca2+ signals are translated into specific cell functions. In T cells, Ca2+ signals are induced following the recognition of antigen by the T cell receptor and depend mainly on Ca2+ influx through store-operated CRAC channels, which are mediated by ORAI proteins following their activation by STIM proteins. The complete absence of Ca2+ influx caused by mutations in Stim1 and Orai1 leads to severe immunodeficiency. Here we summarize how Ca2+ signals are tuned to regulate important T cell functions as proliferation, apoptosis and tolerance, the latter one being a special state of immune cells in which they can no longer respond properly to an otherwise activating stimulus. Perturbations of Ca2+ signaling may be linked to immune suppressive diseases and autoimmune diseases.  相似文献   

14.
Kawasaki disease (KD) is a systemic vasculitis primarily affecting children < 5 years old. Genes significantly associated with KD mostly involve cardiovascular, immune, and inflammatory responses. Recent studies have observed stronger associations for KD risk with multiple genes compared to individual genes. Therefore, we investigated whether gene combinations influenced KD susceptibility or coronary artery lesion (CAL) formation. We examined 384 single-nucleotide polymorphisms (SNPs) for 159 immune-related candidate genes in DNA samples from KD patients with CAL (n = 73), KD patients without CAL (n = 153), and cohort controls (n = 575). Individual SNPs were first assessed by univariate analysis (UVA) and multivariate analysis (MVA). We used multifactor dimensionality reduction (MDR) to examine individual SNPs in one-, two-, and three-locus best fit models. UVA identified 53 individual SNPs that were significantly associated with KD risk or CAL formation (p < 0.10), while 35 individual SNPs were significantly associated using MVA (p ≤ 0.05). Significant associations in MDR analysis were only observed for the two-locus models after permutation testing (p ≤ 0.05). In logistic regression, combined possession of PDE2A (rs341058) and CYFIP2 (rs767007) significantly increased KD susceptibility (OR = 3.54; p = 4.14 x 10−7), while combinations of LOC100133214 (rs2517892) and IL2RA (rs3118470) significantly increased the risk of CAL in KD patients (OR = 5.35; p = 7.46 x 10−5). Our results suggest varying gene-gene associations respectively predispose individuals to KD risk or its complications of CAL.  相似文献   

15.
Calcium release-activated calcium modulator 1(ORAI1) is an integral component of the calcium release-activated calcium channel (CRAC) channel complex and plays a central role in regulating Ca2?+?concentrations in T-lymphocytes. It is critical for many physiological processes, including cell-proliferation, cytokine production and activation of the immune system. Loss of ORAI1 function is linked with rheumatoid arthritis (RA) and hence pharmacological blockers of ORAI1 could be potential therapeutic agents for the treatment of RA. In this study, we have used a high-throughput screening approach to inhibit the binding of Ca2+?toward ORAI1 and the interactions are verified through induced fit docking. The results hint that these compounds act by possibly binding with, and thereby blocking Ca2+-binding with ORAI1 (E106). The molecular dynamics (MD) simulations shows strong support toward the hit compounds by showing the ligand potency throughout the simulation timescale of 30?ns. We have thus identified a novel class of highly stable, potential lead compounds that directly bind with the selectivity filter region E106 and block Ca2+ binding on ORAI1. This resulting alteration in the pore geometry of ORAI1 due to the strong blocking mechanism of lead compounds will greatly diminish its function and the downstream activities that result from the same including decreased production of cytokines in autoimmune disorders. This study may lay the foundation for finding novel lead compounds for clinical trials that could positively modulate the course of autoimmune disorders with ORAI1 as its specific target.  相似文献   

16.
Stromal interaction molecule (STIM1) and ORAI1 are key components of the Ca2+ release‐activated Ca2+ (CRAC) current having an important role in T‐cell activation and mast cell degranulation. CRAC channel activation occurs via physical interaction of ORAI1 with STIM1 when endoplasmic reticulum Ca2+ stores are depleted. Here we show, utilizing a novel STIM1‐derived Förster resonance energy transfer sensor, that the ORAI1 activating small fragment (OASF) undergoes a C‐terminal, intramolecular transition into an extended conformation when activating ORAI1. The C‐terminal rearrangement of STIM1 does not require a functional CRAC channel, suggesting interaction with ORAI1 as sufficient for this conformational switch. Extended conformations were also engineered by mutations within the first and third coiled‐coil domains in the cytosolic portion of STIM1 revealing the involvement of hydrophobic residues in the intramolecular transition. Corresponding full‐length STIM1 mutants exhibited enhanced interaction with ORAI1 inducing constitutive CRAC currents, even in the absence of store depletion. We suggest that these mutant STIM1 proteins imitate a physiological activated state, which mimics the intramolecular transition that occurs in native STIM1 upon store depletion.  相似文献   

17.
Patients with severe combined immune deficiency (SCID) suffer from defective T-cell Ca2+ signaling. A loss of Ca2+ entry has been linked at the molecular level to single missense mutation R91W in the store-operated Ca2+ channel ORAI1. However, the mechanistic impact of this mutation on ORAI1 function remains unclear. Confocal Förster resonance energy transfer microscopy revealed that dynamic store-operated coupling of STIM1 to ORAI1 R91W was largely sustained similar to wild-type ORAI1. Characterization of various point mutants at position 91 by whole cell patch clamp recordings displayed that neutral or even negatively charged amino acids did not abolish ORAI1 function. However, substitution by hydrophobic leucine, valine, or phenylalanine resulted in non-functional ORAI1 channels, despite preserved STIM1 coupling. Besides conformational constraints at the N terminus/membrane interface predicted for the hydrophobic mutants, additional key factor(s) were suggested to determine ORAI1 functionality. Calculation of the probability for the 1st transmembrane domain and its hydrophobicity revealed a substantial increase for all hydrophobic substitutions that lead to non-functional ORAI1 R91X mutants in contrast to those with hydrophilic residues. Hence, increased hydrophobicity might lead to disrupted permeation/gating, as an ORAI1 channel with increased pore size and R91W mutation failed to recover activity. In conclusion, the increase in hydrophobicity at the N terminus/membrane interface represents the major cause for yielding non-functional ORAI1 channels.The immune system consists of various cell types such as T- and B-cells that are involved in protecting the body from foreign particles and pathogenic organisms. Defects in T-cell development impair normal immune function and may lead to primary immune deficiency. One subgroup thereof represented by the severe combined immunodeficiency (SCID)4 occurs in 1 of 50,000–100,000 live births, causing an onset of one or more serious infections, such as pneumonia, meningitis, or bloodstream infections, within the first few months of life (1, 2). It is currently known that defective T-cell signaling in SCID patients can arise from mutations in different genes including a point mutation in ORAI1 (35). T-cell function and proliferation requires calcium influx mediated by the Ca2+ release-activated Ca2+ channel. It is activated by depletion of intracellular Ca2+ stores induced by the second messenger inositol 1,4,5-trisphosphate (69) and this cytosolic Ca2+ entry serves essential functions from secretion to gene expression and cell growth (10).A combination of RNA interference-based screening and analysis of single nucleotide polymorphism arrays of patients with SCID syndrome has led to the identification of the plasma-membrane protein ORAI1 as a key component of the Ca2+ release-activated Ca2+ channel complex (11, 12). An overexpression of wild-type ORAI1 (4) or a related member ORAI3 (13) in SCID T-cells partially restored store-operated Ca2+ influx. Based on permeability studies of different point mutants in transmembrane regions 1 and 3 of ORAI1, it is suggested to form the pore of the Ca2+ release-activated Ca2+ channel (1416). ORAI1 acts in concert with the stromal interacting molecule 1 (STIM1) (4, 1719), a single transmembrane spanning Ca2+ sensor located in the endoplasmic reticulum. We have recently demonstrated that a dynamic coupling of STIM1 to ORAI1 via a putative coiled-coil domain in its C terminus is induced by endoplasmic reticulum store depletion, resulting in Ca2+ influx through the ORAI1 channels (20). The impaired Ca2+ influx into T-cells of SCID patients has been attributed to a single missense mutation R91W in ORAI1, which is conserved among all three ORAI proteins and located at the N terminus/membrane interface (18). Platelets of mice expressing ORAI1 R93W (a homologue to the human ORAI1 R91W) display markedly reduced store-operated Ca2+ entry, reduced integrin expression, as well as impaired degranulation (21). The generation of a series of concatenated tetramers of ORAI1 that include different numbers and arrangements of mutant ORAI1 R91W proteins shows that an increasing number of mutant proteins results in a graded reduction in Ca2+ release-activated Ca2+ channel currents (22). However, the molecular impact that leads to non-functional ORAI1 R91W channels is still unknown.Here, a set of single point mutations at position 91 of ORAI1 and the adjacent ASSR domain (aa 88–91) were analyzed with confocal Förster resonance energy transfer (FRET) microscopy and the whole cell patch clamp technique. Our functional data together with predictions on the secondary structure suggested that besides conformational constraints within the ASSW domain a substantial increase in hydrophobicity and probability of the first transmembrane segment led to non-functional ORAI channels, yet retained their ability to couple to STIM1 in a store-dependent manner.  相似文献   

18.
Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca2+]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca2+]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.  相似文献   

19.
Skeletal muscle fibres support store-operated Ca2+-entry (SOCE) across the t-tubular membrane upon exhaustive depletion of Ca2+ from the sarcoplasmic reticulum (SR). Recently we demonstrated the presence of a novel mode of SOCE activated under conditions of maintained [Ca2+]SR. This phasic SOCE manifested in a fast and transient manner in synchrony with excitation contraction (EC)-coupling mediated SR Ca2+-release (Communications Biology 1:31, doi: https://doi.org/10.1038/s42003-018-0033-7). Stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel 1 (ORAI1), positioned at the SR and t-system membranes, respectively, are the considered molecular correlate of SOCE. The evidence suggests that at the triads, where the terminal cisternae of the SR sandwich a t-tubule, STIM1 and ORAI1 proteins pre-position to allow for enhanced SOCE transduction.Here we show that phasic SOCE is not only shaped by global [Ca2+]SR but provide evidence for a local activation within nanodomains at the terminal cisternae of the SR. This feature may allow SOCE to modulate [Ca2+]SR during EC coupling. We define SOCE to occur on the same timescale as EC coupling and determine the temporal coherence of SOCE activation to SR Ca2+ release. We derive a delay of 0.3 ms reflecting diffusive Ca2+-equilibration at the luminal ryanodine receptor 1 (RyR1) channel mouth upon SR Ca2+-release. Numerical simulations of Ca2+-calsequestrin binding estimates a characteristic diffusion length and confines an upper limit for the spatial distance between STIM1 and RyR1. Experimental evidence for a 4- fold change in t-system Ca2+-permeability upon prolonged electrical stimulation in conjunction with numerical simulations of Ca2+-STIM1 binding suggests a Ca2+ dissociation constant of STIM1 below 0.35 mM. Our results show that phasic SOCE is intimately linked with RyR opening and closing, with only μs delays, because [Ca2+] in the terminal cisternae is just above the threshold for Ca2+ dissociation from STIM1 under physiological resting conditions.This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

20.
The ubiquitous Ca2+ release-activated Ca2+ (CRAC) channel is crucial to many physiological functions. Both gain and loss of CRAC function is linked to disease. While ORAI1 is a crucial subunit of CRAC channels, recent evidence suggests that ORAI2 and ORAI3 heteromerize with ORAI1 to form native CRAC channels. Furthermore, ORAI2 and ORAI3 can form CRAC channels independently of ORAI1, suggesting diverse native CRAC stoichiometries. Yet, most available CRAC modifiers are presumed to target ORAI1 with little knowledge of their effects on ORAI2/3 or heteromers of ORAIs. Here, we used ORAI1/2/3 triple-null cells to express individual ORAI1, ORAI2, ORAI3 or ORAI1/2/3 concatemers. We reveal that GSK-7975A and BTP2 essentially abrogate ORAI1 and ORAI2 activity while causing only a partial inhibition of ORAI3. Interestingly, Synta66 abrogated ORAI1 channel function, while potentiating ORAI2 with no effect on ORAI3. CRAC channel activities mediated by concatenated ORAI1-1, ORAI1-2 and ORAI1-3 dimers were inhibited by Synta66, while ORAI2-3 dimers were unaffected. The CRAC enhancer IA65 significantly potentiated ORAI1 and ORAI1-1 activity with marginal effects on other ORAIs. Further, we characterized the profiles of individual ORAI isoforms in the presence of Gd3+ (5μM), 2-APB (5 μM and 50 μM), as well as changes in intracellular and extracellular pH. Our data reveal unique pharmacological features of ORAI isoforms expressed in an ORAI-null background and provide new insights into ORAI isoform selectivity of widely used CRAC pharmacological compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号