首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.Staphylococcus aureus is a gram-positive bacterium that lives as part of the normal microflora on the skin and mucous membranes of humans and animals. If S. aureus passes through the epithelial barrier and reaches internal organs, it can cause a variety of diseases, ranging from minor skin infections, such as furuncles or boils, to severe infections, such as bacteremia, pneumonia, osteomyelitis, or endocarditis. Despite the progress with antibiotics in the treatment of bacterial infections over the last 2 decades, the number of infections due to S. aureus has increased (11, 30). The infection rate has been correlated with an increase in the use of prosthetic and indwelling devices in modern medical practices (24, 26). S. aureus, as well as other coagulase-negative staphylococci, displays a strong capacity to irreversibly attach to the surface of implanted medical devices and forms multilayered communities of bacteria, known as biofilms, that grow embedded in a self-produced extracellular matrix (23). The biofilm formation process occurs in two steps: first, bacterial cells irreversibly attach to a surface, and second, they interact with each other and accumulate in multilayered cell clusters embedded in a self-produced extracellular matrix. Primary attachment is mediated by physico-chemical cell surface properties as well as specific factors that mediate the attachment to the host-derived extracellular matrix components that rapidly coat the biomaterial following insertion into the patient. Numerous proteins from the MSCRAMMs family (microbial surface components recognizing adhesive matrix molecules) are involved in the first step of S. aureus biofilm formation, such as clumping factors ClfA (37) and ClfB (41) and fibrinogen and fibronectin binding proteins (FnBPA and FnBPB) (25, 31). Once bacteria accumulate in multilayered cell clusters, most have no direct contact with the surface, and thus cell-to-cell interactions become essential for biofilm development and maintenance. An extracellular polysaccharide intercellular adhesin (PIA, or PNAG), produced by icaADBC operon-encoded enzymes, is currently the best-characterized element mediating intercellular interactions in vitro (8, 23, 34, 35, 38). Alternatively, a number of surface proteins can replace PIA/PNAG exopolysaccharide in promoting intercellular adhesion and biofilm development, including the surface protein Bap (9). All the tested staphylococcal isolates harboring the bap gene were shown to be strong biofilm producers, and inactivation of the icaADBC operon in bap-positive strains had no effect on in vitro biofilm formation (57). Remarkably, proteins homologous to Bap are involved in the biofilm formation process in diverse bacterial species (33). A second surface protein, SasG, as well as its homologous protein in Staphylococcus epidermidis, Aap, also mediates intercellular interactions and biofilm development in the absence of the ica operon (7, 51). More recently, two independent laboratories have shown that fibronectin binding proteins A and B (FnBPA and FnBPB) induce biofilm development of clinical isolates of S. aureus (45, 55). Finally, there is growing evidence that extracellular DNA, despite not being sufficient to replace PIA/PNAG exopolysaccharide, is an important S. aureus biofilm matrix component (50).During the course of a systematic mutagenesis study of the 17 two-component systems of S. aureus that aimed to identify biofilm-negative regulators, we found that S. aureus agr arlRS double mutants developed an alternative, ica-independent biofilm in a chemically defined medium, Hussain-Hastings-White (HHW) medium (56). This study focused on the identification of the proteinaceous compound responsible for the biofilm developed by S. aureus agr arlRS mutants. Here, we show that S. aureus protein A is responsible for the aggregative phenotype and capacity for biofilm formation displayed by this strain. Furthermore, overproduction of protein A in wild-type S. aureus strains or addition of soluble protein A to bacterial growth medium induced aggregation and biofilm development, suggesting that protein A does not need to be covalently linked to the cell wall to promote multicellular behavior. Moreover, deletion of the spa gene significantly decreased the capacity of S. aureus to colonize subcutaneously implanted catheters. Our findings support a novel role for protein A in promoting multicellular behavior and suggest that protein A-mediated biofilm development may have a critical function during the infection process of S. aureus.  相似文献   

2.
In-silico virtual screening of bacterial surface enzyme Staphylococcus aureus Sortase A against commercial compound libraries using FlexX software package has led to the identification of novel inhibitors. Inhibition of enzyme catalytic activity was determined by monitoring the steady state cleavage of a model peptide substrate. Preliminary structure activity relationship studies on the lead compound resulted in the identification of compounds with improved activity. The most active compound has an IC50 value of 58 microM against the enzyme.  相似文献   

3.
Zhu J  Lu C  Standland M  Lai E  Moreno GN  Umeda A  Jia X  Zhang Z 《Biochemistry》2008,47(6):1667-1674
Staphylococcus aureus Sortase A (SrtA) is an important Gram-positive membrane enzyme which catalyzes the anchoring of many cell surface proteins conserved with the LPXTG sequence. Recently SrtA has been demonstrated to be a dimer with a Kd of 55 microM in vitro. Herein, we show that a single point mutation of amino acid residue on the surface of SrtA can completely disrupt the dimerization. Native polyacrylamide gel electrophoresis and analytical gel filtration chromatography were used to detect the dimer-monomer equilibrium of SrtA mutants. Circular dichroism spectrum experiments were performed to study the conformational change of each SrtA mutant. An enzyme activity assay confirmed that all the SrtA mutants were active in vitro. Our results not only are important for understanding the SrtA protein self-associating mechanism but also provided the necessary starting materials for the study of sortase A pathway in vivo, which may have significant implications for discovering microbial physiology and give a potential target for novel Gram-positive antibiotics.  相似文献   

4.
Incorporation of canavanine by Staphylococcus aureus 524 SC   总被引:4,自引:1,他引:4       下载免费PDF全文
  相似文献   

5.
High-throughput screening of small-molecule libraries has led to the identification of thiadiazoles as a new class of inhibitors against Staphylococcus aureus sortase A (SrtA). N-(5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl)nicotinamide (IC50 = 3.8 µM) was identified as a potent inhibitor of SrtA after synthetic modification of hit compounds. Additional ligands developed in this study displayed affinities in the low micromolar range without affecting bacterial growth in vitro. The study also suggest a new mode of action through covalent binding to the active site cysteine.  相似文献   

6.
7.
Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential.  相似文献   

8.
Many surface proteins are anchored to the cell wall by the action of sortase enzymes, a recently discovered family of cysteine transpeptidases. As the surface proteins of human pathogens are frequently required for virulence, the sortase-mediated anchoring reaction represents a potential target for new anti-infective agents. It has been suggested that the sortase from Staphylococcus aureus (SrtA), may use a similar catalytic strategy as the papain cysteine proteases, holding its Cys184 side chain in an active configuration through a thiolate-imidazolium ion interaction with residue His120. To investigate the mechanism of transpeptidation, we have synthesized a peptidyl-vinyl sulfone substrate mimic that irreversibly inhibits SrtA. Through the study of the pH dependence of SrtA inhibition and NMR, we have estimated the pKas of the active site thiol (Cys184) and imidazole (His120) to be approximately 9.4 and 7.0, respectively. These measurements are inconsistent with the existence of a thiolate-imidazolium ion pair and suggest a general base catalysis mechanism during transpeptidation.  相似文献   

9.
Lyon GJ  Novick RP 《Peptides》2004,25(9):1389-1403
There are two basic types of bacterial communication systems--those in which the signal is directed solely at other organisms and those in which the signal is sensed by the producing organism as well. The former are involved primarily in conjugation; the latter in adaptation to the environment. Gram-positive bacteria use small peptides for both types of signaling, whereas Gram-negative bacteria use homoserine lactones. Since adaptation signals are autoinducers the response is population-density-dependent and has been referred to as "quorum-sensing". Gram-negative bacteria internalize the signals which act upon an intracellular receptor, whereas Gram-positive bacteria use them as ligands for the extracellular receptor of a two-component signaling module. In both cases, the signal activates a complex adaptation response involving many genes.  相似文献   

10.
Sortase cysteine transpeptidases covalently attach proteins to the bacterial cell wall or assemble fiber-like pili that promote bacterial adhesion. Members of this enzyme superfamily are widely distributed in Gram-positive bacteria that frequently utilize multiple sortases to elaborate their peptidoglycan. Sortases catalyze transpeptidation using a conserved active site His-Cys-Arg triad that joins a sorting signal located at the C terminus of their protein substrate to an amino nucleophile located on the cell surface. However, despite extensive study, the catalytic mechanism and molecular basis of substrate recognition remains poorly understood. Here we report the crystal structure of the Staphylococcus aureus sortase B enzyme in a covalent complex with an analog of its NPQTN sorting signal substrate, revealing the structural basis through which it displays the IsdC protein involved in heme-iron scavenging from human hemoglobin. The results of computational modeling, molecular dynamics simulations, and targeted amino acid mutagenesis indicate that the backbone amide of Glu224 and the side chain of Arg233 form an oxyanion hole in sortase B that stabilizes high energy tetrahedral catalytic intermediates. Surprisingly, a highly conserved threonine residue within the bound sorting signal substrate facilitates construction of the oxyanion hole by stabilizing the position of the active site arginine residue via hydrogen bonding. Molecular dynamics simulations and primary sequence conservation suggest that the sorting signal-stabilized oxyanion hole is a universal feature of enzymes within the sortase superfamily.  相似文献   

11.
Methicillin resistant Staphylococcus aureus (MRSA) is one of the challenging bacterial pathogen due to its acquired resistance to the β lactam antibiotics. The Sortase A is an enzyme of Gram-positive bacteria including S. aureus to anchor surface proteins to the cell wall. Sortase A is well studied enzyme and considered as the drug target against MRSA. Sortase A plays active role in anchoring the virulence proteins on the cell wall of the Gram-positive bacteria. The inhibition of Sortase A activity results in the separation of S. aureus from the host cells and ultimately alleviation of the infection. Here, we adapted a structure-based virtual screening protocol which helped in identification of novel potential inhibitors of Sortase A. The protocol involved the docking of a chemical library of druglike compounds with the Sortase A binding site represented by multiple crystal structures. The compounds were ranked by multiple scoring functions and shortlisted for future experimental screening. The method resulted in shortlisting of three compounds as potential novel inhibitors of Sortase A out of a large chemical library. The high rankings of shortlisted compounds estimated by multiple scoring functions showed their binding potential with Sortase A. The results are proved to be a simple yet efficient choice of structure-based virtual screening. The identified compounds are druglike and show high rankings among all set protocols of the virtual screening. We hope that the study would eventually help to expedite the discovery of novel drug candidates against MRSA.  相似文献   

12.
Staphylococcus aureus is an important human pathogen that is renowned both for its rapid transmission within hospitals and the community, and for the formation of antibiotic resistant biofilms on medical implants. Recently, it was shown that S. aureus is able to spread over wet surfaces. This motility phenomenon is promoted by the surfactant properties of secreted phenol-soluble modulins (PSMs), which are also known to inhibit biofilm formation. The aim of the present studies was to determine whether any cell surface-associated S. aureus proteins have an impact on colony spreading. To this end, we analyzed the spreading capabilities of strains lacking non-essential components of the protein export and sorting machinery. Interestingly, our analyses reveal that the absence of sortase A (SrtA) causes a hyper-spreading phenotype. SrtA is responsible for covalent anchoring of various proteins to the staphylococcal cell wall. Accordingly, we show that the hyper-spreading phenotype of srtA mutant cells is an indirect effect that relates to the sortase substrates FnbpA, FnbpB, ClfA and ClfB. These surface-exposed staphylococcal proteins are known to promote biofilm formation, and cell-cell interactions. The hyper-spreading phenotype of srtA mutant staphylococcal cells was subsequently validated in Staphylococcus epidermidis. We conclude that cell wall-associated factors that promote a sessile lifestyle of S. aureus and S. epidermidis antagonize the colony spreading motility of these bacteria.  相似文献   

13.
14.
15.
Staphylokinase is a 136 aa long bacteriophage encoded protein expressed by lysogenic strains of Staphylococcus aureus. Present understanding of the role of staphylokinase during bacterial infection is based on its interaction with the host proteins, alpha-defensins and plasminogen. alpha-Defensins are bactericidal peptides originating from human neutrophils. Binding of staphylokinase to alpha-defensins abolishes their bactericidal properties, which makes staphylokinase a vital tool for staphylococcal resistance to host innate immunity. Complex binding between staphylokinase and plasminogen results in the formation of active plasmin, a broad-spectrum proteolytic enzyme facilitating bacterial penetration into the surrounding tissues. We have recently shown high levels of staphylokinase expression in clinical isolates of skin and mucosal origin and relative low levels in isolates invading internal organs. These findings are supported by sepsis studies using isogenic S. aureus strains demonstrating increased bacterial load in the absence of staphylokinase production. Our observations indicate that staphylokinase favours symbiosis of staphylococci with the host that makes it an important colonization factor.  相似文献   

16.
Effect of salts on penicillinase release by Staphylococcus aureus   总被引:6,自引:0,他引:6  
T K Kim  J R Chipley 《Microbios》1974,(41):55-63
  相似文献   

17.
BlaI is a repressor of BlaZ, the beta-lactamase responsible for penicillin resistance in Staphylococcus aureus. Through screening a transposon library in S. aureus Newman for susceptibility to cathelicidin antimicrobial peptide, we discovered BlaI as a novel cathelicidin resistance factor. Additionally, through integrational mutagenesis in S. aureus Newman and MRSA Sanger 252 strains, we confirmed the role of BlaI in resistance to human and murine cathelidicin and showed that it contributes to virulence in human whole blood and murine infection models. We further demonstrated that BlaI could be a target for innate immune-based antimicrobial therapies; by removing BlaI through subinhibitory concentrations of 6-aminopenicillanic acid, we were able to sensitize S. aureus to LL-37 killing.  相似文献   

18.
We investigated the mode of action of aureocin A53 on living bacterial cells and model membranes. Aureocin A53 acted bactericidally against Staphylococcus simulans 22, with >90% of the cells killed within a few minutes. Cell death was followed by lysis, as indicated by a clearing of the cell suspension and Gram staining. Aureocin A53 rapidly dissipated the membrane potential and simultaneously stopped biosynthesis of DNA, polysaccharides, and protein. Aureocin A53 induced a rapid release of preaccumulated glutamate and Rb+. Experiments on model membranes demonstrated that aureocin A53 provoked significant leakage of carboxyfluorescein (CF) exclusively from acidic liposomes but only at relatively high concentrations (0.5 to 8 mol%). Thus, the bactericidal activity of aureocin A53 derives from membrane permeation via generalized membrane destruction rather than by formation of discrete pores within membranes. Tryptophan emission fluorescence spectroscopy demonstrated interaction of aureocin A53 with both acidic and neutral membranes, as indicated by similar blue shifts. Since there was no significant aureocin A53-induced CF leakage from neutral liposomes, its appears that the peptide does interact with neutral lipids without provoking membrane damage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号