首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) is the prevalent cause of dementia in the ageing world population. Apolipoprotein E4 (ApoE4) allele is the key genetic risk factor for AD, although the mechanisms linking ApoE4 with neurocognitive impairments and aberrant metabolism remains to be fully characterised. We discovered a significant increase in the ApoE4 content of serum exosomes in old healthy subjects and AD patients carrying ApoE4 allele as compared with healthy adults. Elevated exosomal ApoE4 demonstrated significant inverse correlation with serum level of thyroid hormones and cognitive function. We analysed effects of ApoE4-containing peripheral exosomes on neural cells and neurological outputs in aged or thyroidectomised young mice. Ageing-associated hypothyroidism as well as acute thyroidectomy augmented transport of liver-derived ApoE4 reach exosomes into the brain, where ApoE4 activated nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome by increasing cholesterol level in neural cells. This, in turn, affected cognition, locomotion and mood. Our study reveals pathological potential of exosomes-mediated relocation of ApoE4 from the periphery to the brain, this process can represent potential therapeutic target.Subject terms: Cognitive neuroscience, Alzheimer''s disease, Cellular neuroscience  相似文献   

2.
Mutations to the cholesterol transport protein apolipoprotein E (ApoE) have been identified as a major risk factor for the development of sporadic or late-onset Alzheimer’s disease (AD), with the e4 allele representing an increased risk and the rare e2 allele having a reduced risk compared to the primary e3 form. The reasons behind the change in risk are not entirely understood, though ApoE4 has been connected to inflammation and toxicity in both the brain and the periphery. The goal of this study was to better understand how the ApoE isoforms (ApoE2/3/4) confer differential AD-related risk by assessing cell-specific ApoE-related neuroinflammatory and neurotoxic effects. We compared the effects of ApoE isoforms in vitro on human astrocytes, a human immortalized microglia cell line (HMC3), and the human neuroblastoma cell line SH-SY5Y. Cells were treated for 24 h with or without recombinant ApoE2, ApoE3, or ApoE4 (20 nM) and inflammation and toxicity markers assessed. Our results indicated the expression of inflammatory cytokines IL-1β, TNFα, and IL-6 in human astrocytes was increased in response to all ApoE isoforms, with ApoE4 evoking the highest level of cytokine expression. In response to ApoE2 or ApoE3, microglial cells showed reduced levels of microglial activation markers TREM2 and Clec7a, while ApoE4 induced increased levels of both markers. ApoE2 promoted neuron survival through increased BDNF release from astrocytes. In addition, ApoE2 promoted, while ApoE4 reduced, neuronal viability. Overall, these results suggest that ApoE4 acts on cells in the brain to promote inflammation and neuronal injury and that the deleterious effects of ApoE4 on these cells may, in part, contribute to its role as a risk factor for AD.  相似文献   

3.
Recent studies suggest that high-salt diet is associated with cognitive decline in human and mouse. The fact that genetic factors account for less than 50% cases of sporadic Alzheimer’s disease (AD) highlights the important contribution of environmental factors, such as high-salt diet, in AD pathogenesis. However, whether and how high-salt diet fits the “amyloid cascade” hypothesis remains unexplored. Here, we show sodium chloride (NaCl) could increase Aβ levels in the medium of HEK293 cells overexpressing amyloid precursor protein (APP) or C99 fragment. NaCl treatment dose not affect APP level, gamma secretase level or activity. Instead, NaCl treatment suppresses the capacity of cells to clear Aβ and reduces Apolipoprotein E (ApoE) level. Finally, NaCl treated THP-1 or BV2 cells are inefficient in clearing Aβ when co-cultured with rat primary neurons. Our study suggests that high-salt diet may increase AD risk by directly modulating Aβ levels.  相似文献   

4.
The apolipoprotein E (ApoE) epsilon4 allele is a major risk factor for neurodegenerative conditions, including Alzheimer's disease. A role for ApoE is implicated in regeneration of synaptic circuitry after neural injury. In the in vitro mouse organotypic hippocampal slice culture system, we previously showed that cultures derived from ApoE-knockout mice are defective in mossy fiber sprouting into the dentate gyrus molecular layer. This sprouting defect was rescued in cultures from transgenic mice expressing ApoE3 under the control of the human promoter and in ApoE-knockout cultures treated with ApoE3-conditioned media. Although the ApoE3 transgene fully restored sprouting, ApoE4 restored sprouting to only 58% of ApoE3 levels. These data indicate that ApoE isoform-specific effects on neuroregeneration may contribute to its genetic risk for Alzheimer's disease.  相似文献   

5.
With the exception of ApoE4, genome-wide association studies have failed to identify strong genetic risk factors for late-onset Alzheimer’s disease, despite strong evidence of heritability, suggesting that many low penetrance genes may be involved. Additionally, the nature of the identified genetic risk factors and their relation to disease pathology is also largely obscure. Previous studies have found that a cancer-associated variant of the cell cycle inhibitor gene p21cip1 is associated with increased risk of Alzheimer’s disease. The aim of this study was to confirm this association and to elucidate the effects of the variant on protein function and Alzheimer-type pathology. We examined the association of the p21cip1 variant with Alzheimer’s disease and Parkinson’s disease with dementia. The genotyping studies were performed on 719 participants of the Oxford Project to Investigate Memory and Ageing, 225 participants of a Parkinson’s disease DNA bank, and 477 participants of the Human Random Control collection available from the European Collection of Cell Cultures. The post mortem studies were carried out on 190 participants. In the in-vitro study, human embryonic kidney cells were transfected with either the common or rare p21cip1 variant; and cytometry was used to assess cell cycle kinetics, p21cip1 protein expression and sub-cellular localisation. The variant was associated with an increased risk of Alzheimer’s disease, and Parkinson’s disease with dementia, relative to age matched controls. Furthermore, the variant was associated with an earlier age of onset of Alzheimer’s disease, and a more severe phenotype, with a primary influence on the accumulation of tangle pathology. In the in-vitro study, we found that the SNPs reduced the cell cycle inhibitory and anti-apoptotic activity of p21cip1. The results suggest that the cancer-associated variant of p21cip1 may contribute to the loss of cell cycle control in neurons that may lead to Alzheimer-type neurodegeneration.  相似文献   

6.
Apolipoprotein E gene (Apoε) has three common alleles (ε2, ε3, and ε4), of which ε4 has been shown to be associated with an increased risk for Alzheimer’s disease (AD). Possible additional genetic factors, like the −491A variant of ApoE promoter may modify the development of AD, independently of the ApoE allele status. The objective of this study was to investigate whether A/T allelic polymorphism at site−491 of the ApoE promoter is associated with AD in a Hungarian population. The genomic DNA isolated from peripheral blood lymphocytes of 52 late-onset AD and 53 control individuals was used as a template for the two examined polymorphisms and PCR assay was applied. The ε4 allele was significantly over-represented in the AD group (28%) as compared with the control population (7%). No significant differences have been found between the control and the AD populations regarding the occurrence of the promoter A allele frequencies (control: 77%, AD: 70%). However, the AA genotype was more frequent in the AD group (48%) than in the control (10%) when the presence of ε4 allele was also considered. It is unlikely therefore that the −491A variant of the ApoE promoter gene is an independent risk factor in the Hungarian AD population, but a linkage disequilibrium exists between the two examined mutations.  相似文献   

7.
Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer’s disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer’s disease. In addition, impaired insulin signaling in the Alzheimer’s disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.  相似文献   

8.
9.
Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer’s disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer’s disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer’s disease.  相似文献   

10.
Cortical and hippocampal hypersynchrony of neuronal networks seems to be an early event in Alzheimer’s disease pathogenesis. Many mouse models of the disease also present neuronal network hypersynchrony, as evidenced by higher susceptibility to pharmacologically-induced seizures, electroencephalographic seizures accompanied by spontaneous interictal spikes and expression of markers of chronic seizures such as neuropeptide Y ectopic expression in mossy fibers. This network hypersynchrony is thought to contribute to memory deficits, but whether it precedes the onset of memory deficits or not in mouse models remains unknown. The earliest memory impairments in the Tg2576 mouse model of Alzheimer’s disease have been observed at 3 months of age. We thus assessed network hypersynchrony in Tg2576 and non-transgenic male mice at 1.5, 3 and 6 months of age. As soon as 1.5 months of age, Tg2576 mice presented higher seizure susceptibility to systemic injection of a GABAA receptor antagonist. They also displayed spontaneous interictal spikes on EEG recordings. Some Tg2576 mice presented hippocampal ectopic expression of neuropeptide Y which incidence seems to increase with age among the Tg2576 population. Our data reveal that network hypersynchrony appears very early in Tg2576 mice, before any demonstrated memory impairments.  相似文献   

11.
RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death. Its downregulation in Parkinson’s and Huntington’s disease models ameliorates the pathological phenotypes. In the context of Alzheimer’s disease (AD), the coding gene for RTP801, DDIT4, is responsive to Aβ and modulates its cytotoxicity in vitro. Also, RTP801 mRNA levels are increased in AD patients’ lymphocytes. However, the involvement of RTP801 in the pathophysiology of AD has not been yet tested. Here, we demonstrate that RTP801 levels are increased in postmortem hippocampal samples from AD patients. Interestingly, RTP801 protein levels correlated with both Braak and Thal stages of the disease and with GFAP expression. RTP801 levels are also upregulated in hippocampal synaptosomal fractions obtained from murine 5xFAD and rTg4510 mice models of the disease. A local RTP801 knockdown in the 5xFAD hippocampal neurons with shRNA-containing AAV particles ameliorates cognitive deficits in 7-month-old animals. Upon RTP801 silencing in the 5xFAD mice, no major changes were detected in hippocampal synaptic markers or spine density. Importantly, we found an unanticipated recovery of several gliosis hallmarks and inflammasome key proteins upon neuronal RTP801 downregulation in the 5xFAD mice. Altogether our results suggest that RTP801 could be a potential future target for theranostic studies since it could be a biomarker of neuroinflammation and neurotoxicity severity of the disease and, at the same time, a promising therapeutic target in the treatment of AD.Subject terms: Alzheimer''s disease, Alzheimer''s disease  相似文献   

12.

Objective

To investigate whether there is a specific dose-dependent effect of the Apolipoprotein E (APOE) ε4 and ε2 alleles on hippocampal volume, across the cognitive spectrum, from normal aging to Alzheimer’s Disease (AD).

Materials and Methods

We analyzed MR and genetic data on 662 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database–198 cognitively normal controls (CN), 321 mild-cognitive impairment (MCI) subjects, and 143 AD subjects–looking for dose-dependent effects of the ε4 and ε2 alleles on hippocampal volumes. Volumes were measured using a fully-automated algorithm applied to high resolution T1-weighted MR images. Statistical analysis consisted of a multivariate regression with repeated-measures model.

Results

There was a dose-dependent effect of the ε4 allele on hippocampal volume in AD (p = 0.04) and MCI (p = 0.02)–in both cases, each allele accounted for loss of >150 mm3 (approximately 4%) of hippocampal volume below the mean volume for AD and MCI subjects with no such alleles (Cohen’s d = −0.16 and −0.19 for AD and MCI, respectively). There was also a dose-dependent, main effect of the ε2 allele (p<0.0001), suggestive of a moderate protective effect on hippocampal volume–an approximately 20% per allele volume increase as compared to CN with no ε2 alleles (Cohen’s d = 0.23).

Conclusion

Though no effect of ε4 was seen in CN subjects, our findings confirm and extend prior data on the opposing effects of the APOE ε4 and ε2 alleles on hippocampal morphology across the spectrum of cognitive aging.  相似文献   

13.
The apolipoprotein E-ε4 allele is a well-known genetic risk factor for late-onset Alzheimer’s disease, which also impacts the cognitive functions and brain network connectivity in healthy middle-aged adults without dementia. Previous studies mainly focused on the effects of apolipoprotein E-ε4 allele on single index using task or resting-state fMRI. However, how these evoked and spontaneous BOLD indices interact with each other remains largely unknown. Therefore, we evaluated the ‘rest-stimulus interaction’ between working-memory activation and resting-state connectivity in middle-aged apolipoprotein E-ε4 carriers (n=9) and non-carriers (n=8). Four n-back task scans (n = 0, 1, 2, 3) and one resting-state scan were acquired at a 3T clinical MRI scanner. The working-memory beta maps of low-, moderate-, and high-memory loads and resting-state connectivity maps of default mode, executive control, and hippocampal networks were derived and compared between groups. Apolipoprotein E-ε4 carriers presented declined working-memory activation in the high-memory load across whole brain regions and reduced hippocampal connectivity compared with non-carriers. In addition, disrupted rest-stimulus interactions were found in the right anterior insula and bilateral parahippocampal regions for middle-aged adults with apolipoprotein E-ε4 allele. The rest-stimulus interaction improved the detectability of network integrity changes in apolipoprotein E-ε4 carriers, demonstrating the disrupted intrinsic connectivity within the executive-functional regions and the modulated memory-encoding capability within hippocampus-related regions.  相似文献   

14.
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid β peptides in Alzheimer’s disease, is currently being questioned. In addition to full-length amyloid β peptide, several N-terminally truncated fragments of amyloid β peptide could well contribute to Alzheimer’s disease setting and/or progression. Among them, pyroGlu3–amyloid β peptide appears to be one of the main components of early anatomical lesions in Alzheimer’s disease–affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid β, but they appear as the rate-limiting enzymes yielding the Glu3–amyloid β peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3–amyloid β. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3–amyloid β peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3–amyloid β peptide and amyloid β 42–positive plaques and amyloid β 42 load in the triple transgenic Alzheimer’s disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer’s disease–related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer’s disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3–amyloid β peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer’s disease progression.  相似文献   

15.
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.  相似文献   

16.
17.
Several lines of study suggest that peripheral metabolism of amyloid beta (Aß) is associated with risk for Alzheimer disease (AD). In blood, greater than 90% of Aß is complexed as an apolipoprotein, raising the possibility of a lipoprotein-mediated axis for AD risk. In this study, we report that genetic modification of C57BL/6J mice engineered to synthesise human Aß only in liver (hepatocyte-specific human amyloid (HSHA) strain) has marked neurodegeneration concomitant with capillary dysfunction, parenchymal extravasation of lipoprotein-Aß, and neurovascular inflammation. Moreover, the HSHA mice showed impaired performance in the passive avoidance test, suggesting impairment in hippocampal-dependent learning. Transmission electron microscopy shows marked neurovascular disruption in HSHA mice. This study provides causal evidence of a lipoprotein-Aß /capillary axis for onset and progression of a neurodegenerative process.

It has been suggested that peripheral metabolism of amyloid-beta is associated with risk for Alzheimer’s disease. This study reveals that the expression of human amyloid exclusively in the liver induces Alzheimer’s disease-like pathologies in mice, potentially indicating a completely novel pathway of Alzheimer’s disease aetiology and therapies.  相似文献   

18.
Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920’s a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole) were compared between BTBR and control (C57Bl/6) mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.  相似文献   

19.
The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow) or ketogenic diet (79% fat) ad libitum for 3–4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund''s adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature) as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults.  相似文献   

20.
Diabesity-associated metabolic stresses modulate the development of Alzheimer’s disease (AD). For further insights into the underlying mechanisms, we examine whether the genetic background of APPswe/PS1dE9 at the prodromal stage of AD affects peripheral metabolism in the context of diabesity. We characterized APPswe/PS1dE9 transgenic mice treated with a combination of high-fat diet with streptozotocin (HFSTZ) in the early stage of AD. HFSTZ-treated APPswe/PS1dE9 transgenic mice exhibited worse metabolic stresses related to diabesity, while serum β-amyloid levels were elevated and hepatic steatosis became apparent. Importantly, two-way analysis of variance shows a significant interaction between HFSTZ and genetic background of AD, indicating that APPswe/PS1dE9 transgenic mice are more vulnerable to HFSTZ treatment. In addition, body weight gain, high hepatic triglyceride, and hyperglycemia were positively associated with serum β-amyloid, as validated by Pearson’s correlation analysis. Our data suggests that the interplay between genetic background of AD and HFSTZ-induced metabolic stresses contributes to the development of obesity and hepatic steatosis. Alleviating metabolic stresses including dysglycemia, obesity, and hepatic steatosis could be critical to prevent peripheral β-amyloid accumulation at the early stage of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号