首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation.  相似文献   

2.
《Developmental biology》1987,121(1):182-191
We investigated whether all stem cells of Hydra can differentiate both somatic cells and gametes or if a separate germ line exists in these phylogenetically old organisms. The differentiation potential of single stem cells was analyzed by applying a statistical cloning procedure. All stem cell clones were found to differentiate somatic cells. No clone was found to contain stem cells which do not differentiate. Most of the clones could be induced to form gametes. No clone was found that produced gametes only. The results indicate that stem cells are multipotent in the sense that individual stem cells can differentiate into somatic cells as well as germ line cells.  相似文献   

3.
Long-lived plants face the challenge of ever-increasing mutational burden across their long lifespan. Early sequestration of meristematic stem cells is supposed to efficiently slow down this process, but direct measurement of somatic mutations that accompanies segregated cell lineages in plants is still rare. Here, we tracked somatic mutations in 33 leaves and 22 adventitious roots from 22 stem-cuttings across eight major branches of a shrub willow (Salix suchowensis). We found that most mutations propagated separately in leaves and roots, providing clear evidence for early segregation of underlying cell lineages. By combining lineage tracking with allele frequency analysis, our results revealed a set of mutations shared by distinct branches, but were exclusively present in leaves and not in roots. These mutations were likely propagated by rapidly dividing somatic cell lineages which survive several iterations of branching, distinct from the slowly dividing axillary stem cell lineages. Leaf is thus contributed by both slowly and rapidly dividing cell lineages, leading to varied fixation chances of propagated mutations. By contrast, each root likely arises from a single founder cell within the adventitious stem cell lineages. Our findings give straightforward evidence that early segregation of meristems slows down mutation accumulation in axillary meristems, implying a plant “germline” paralog to the germline of animals through convergent evolution.  相似文献   

4.
Maintenance of mitotically cycling germline stem cells (GSCs) is vital for continuous production of gametes. In worms and insects, signaling from surrounding somatic cells play an essential role in the maintenance of GSCs by preventing premature differentiation. In addition, germ cell proteins such as the Drosophila Pumilio and Caenorhabditis elegans FBF, both members of the PUF family translational regulators, contribute to GSC maintenance. FBF functions by suppressing GLD-1, which promotes meiotic entry. However, factors that directly promote GSC proliferation, rather than prevent differentiation, are not known. Here we show that PUF-8, another C. elegans member of the PUF family and MEX-3, a KH domain translational regulator, function redundantly to promote GSC mitosis. We find that PUF-8 protein is highly enriched in mitotic germ cells, which is similar to the expression pattern of MEX-3 described earlier. The puf-8(−) mex-3(−) double mutant gonads contain far fewer germ cells than both single mutants and wild-type. While these cells lack mitotic, meiotic and sperm markers, they retain the germ cell-specific P granules, and are capable of gametogenesis if GLP-1, which normally blocks meiotic entry, is removed. Significantly, we find that at least one of these two proteins is essential for germ cell proliferation even in meiotic entry-defective mutants, which otherwise produce germ cell tumors. We conclude PUF-8 and MEX-3 contribute to GSC maintenance by promoting mitotic proliferation rather than by blocking meiotic entry.  相似文献   

5.
Spermatogenesis in Drosophila is maintained by germ-line stem cells. These cells undergo self-renewing divisions and also generate daughter gonial cells, whose function is to amplify the germ cell pool. Gonial cells subsequently differentiate into spermatocytes that undergo meiosis and generate haploid gametes. To elucidate the circuitry that controls progression through spermatogenic stem cell lineages, we are identifying mutations that lead to either excess germ cells or germ cell loss. From a collection of male sterile mutants, we identified P-element-induced hypomorphic alleles of nop60B, a gene encoding a pseudouridine synthase. Although null mutations are lethal, our P element-induced alleles generate viable, but sterile flies, exhibiting severe testicular atrophy. Sterility is reversed by P-element excision, and the atrophy is rescued by a Nop60B transgene, confirming identity of the gene. Using cell-type-specific markers, we find that testicular atrophy is due to severe loss of germ cells, including stem cells, but much milder effects on the somatic cells, which are themselves maintained by a stem cell lineage. We show that Nop60B activity is required intrinsically for the maintenance of germ-line stem cells. The relationship of these phenotypes to the human syndrome Dyskeratosis congenita, caused by mutations in a Nop60B homolog, is discussed.  相似文献   

6.
In many animals, germline progenitors are kept undifferentiated to give rise to germline stem cells (GSCs), enabling continuous production of gametes throughout animal life. In the Drosophila ovary, GSCs arise from a subset of primordial germ cells (PGCs) that stay undifferentiated even after gametogenesis has started. How a certain population of PGCs is protected against differentiation, and the significance of its regulatory mechanisms on GSC establishment remain elusive. Here we show that epidermal growth factor receptor (Egfr) signaling in somatic stromal intermingled cells (ICs), activated by its ligand produced in germ cells, controls the size of the PGC pool at the onset of gametogenesis. Egfr signaling in ICs limits the number of cells that express the heparan sulfate proteoglycan Dally, which is required for the movement and stability of the locally-produced stromal morphogen, Decapentaplegic (Dpp, a BMP2/4 homologue). Dpp is received by PGCs and maintains them in an undifferentiated state. Altering Egfr signaling levels changes the size of the PGC pool and affects the number of GSCs established during development. While excess GSC formation is compensated by the adult stage, insufficient GSC formation can lead to adult ovarioles that completely lack GSCs, suggesting that ensuring an absolute size of the PGC pool is crucial for the GSC system.  相似文献   

7.
Cell lineage determination in the mouse   总被引:5,自引:0,他引:5  
During the peri-implantation development of the mouse embryo from the blastocyst through gastrulation, Pou5f1 (OCT-4) down-regulation is closely linked to the initial step of lineage allocation to extraembryonic and embryonic somatic tissues. Subsequently, differentiation of the lineage precursors is subject to inductive tissue interactions and intercellular signalling that regulate cell proliferation and the acquisition of lineage-specific morphological and molecular characteristics. A notable variation of this process of lineage specification is the persistence of Pou5f1 activity throughout the differentiation of the primordial germ cells, which may underpin their ability to produce pluripotent progeny either as stem cells (embryonic germ cells) in vitro or as gametes in vivo. Nevertheless, intercellular signalling still plays a critical role in the specification of the primordial germ cells. The findings that primordial germ cells can be induced from any epiblast cells and that they share common progenitors with other somatic cells provide compelling evidence for the absence of a pre-determined germ line in the mouse embryo.  相似文献   

8.
Stem cells in Hydra represent one of the phylogenetically most ancient stem cell systems and, therefore, provide information for reconstructing the early history of stem cell control mechanisms. Hydra's interstitial stem cells are multipotent and differentiate into both somatic cell types and germ line cells. Although it is well accepted that cells of the interstitial cell lineage are migratory, the in vivo migratory potential of multipotent interstitial stem cells has never been explored. Combining in vivo tracing of genetically labeled interstitial stem cells and tissue transplantation, we show that in contrast to precursor cells, multipotent interstitial stem cells are stationary. Only when exposed to tissue depleted of the interstitial cell lineage, interstitial stem cells start to migrate and to repopulate emptied stem cell niches. We conclude that multipotent interstitial stem cells in Hydra are static and that microenvironmental cues including signals derived from the interstitial cell lineage or from niche cells can trigger a shift in collective stem cell behavior to start migration.  相似文献   

9.
10.
Induced pluripotent stem cells (iPSCs) refer to stem cells that are artificially produced using a new technology known as cellular reprogramming, which can use gene transduction in somatic cells. There are numerous potential applications for iPSCs in the field of stem cell biology becauase they are able to give rise to several different cell features of lineages such as three-germ layers. Primordial germ cells, generated via in vitro differentiation of iPSCs, have been demonstrated to produce functional gametes. Therefore, in this review we discussed past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells with an emphasis on iPSCs. Although this domain of research is still in its infancy, exploring development mechanisms of germ cells is promising, especially in humans, to promote future reproductive and developmental engineering technologies. While few studies have evaluated the ability and efficiency of iPSCs to differentiate toward male germ cells in vitro by different inducers, the given effect was investigated in this review.  相似文献   

11.
生殖细胞是多细胞生物体遗传物质传递的载体,在发育生物学、临床医学及畜牧业生产等领域中具有广阔的应用前景。原始生殖细胞作为胚胎体内最早出现的生殖细胞,在发育过程中受多种信号因子的诱导,发生特化、迁移、分化及减数分裂,最终形成单倍体的配子,此过程在遗传学和表观遗传学方面受到严格的调控。另外,多能性干细胞向生殖细胞的分化以及生殖细胞的体外培养方面在最近均取得了较大的进展。该文将主要围绕原始生殖细胞,综述最近几年来关于生殖细胞形成中的转录调控及体外培养体系的进展。  相似文献   

12.
In order to sustain lifelong production of gametes, many animals have evolved a stem cell–based gametogenic program. In the Drosophila ovary, germline stem cells (GSCs) arise from a pool of primordial germ cells (PGCs) that remain undifferentiated even after gametogenesis has initiated. The decision of PGCs to differentiate or remain undifferentiated is regulated by somatic stromal cells: specifically, epidermal growth factor receptor (EGFR) signaling activated in the stromal cells determines the fraction of germ cells that remain undifferentiated by shaping a Decapentaplegic (Dpp) gradient that represses PGC differentiation. However, little is known about the contribution of germ cells to this process. Here we show that a novel germline factor, Gone early (Goe), limits the fraction of PGCs that initiate gametogenesis. goe encodes a non-peptidase homologue of the Neprilysin family metalloendopeptidases. At the onset of gametogenesis, Goe was localized on the germ cell membrane in the ovary, suggesting that it functions in a peptidase-independent manner in cell–cell communication at the cell surface. Overexpression of Goe in the germline decreased the number of PGCs that enter the gametogenic pathway, thereby increasing the proportion of undifferentiated PGCs. Inversely, depletion of Goe increased the number of PGCs initiating differentiation. Excess PGC differentiation in the goe mutant was augmented by halving the dose of argos, a somatically expressed inhibitor of EGFR signaling. This increase in PGC differentiation resulted in a massive decrease in the number of undifferentiated PGCs, and ultimately led to insufficient formation of GSCs. Thus, acting cooperatively with a somatic regulator of EGFR signaling, the germline factor goe plays a critical role in securing the proper size of the GSC precursor pool. Because goe can suppress EGFR signaling activity and is expressed in EGF-producing cells in various tissues, goe may function by attenuating EGFR signaling, and thereby affecting the stromal environment.  相似文献   

13.
14.
Three categories of precursor cells have been identified in postnatal mammals: tissue-committed progenitor cells, germ layer lineage-committed stem cells and lineage-uncommitted pluripotent stem cells. Progenitor cells are the immediate precursors of differentiated tissues. Germ layer lineage stem cells can be induced to form multiple cell types belonging to their respective ectodermal, mesodermal, and endodermal embryological lineages. Pluripotent stem cells will form somatic cell types from all three primary germ layer lineages. Progenitor cells demonstrate a finite life span before replicative senescence and cell death occur. Both germ layer lineage stem cells and pluripotent stem cells are telomerase positive and display extensive capabilities for self-renewal. Stem cells which undergo such extensive replication have the potential for undergoing mutations that may subsequently alter cellular functions. Gross mutations in the genome may be visualized as chromosomal aneuploidy and/or chromosomes that appear aberrant. This study was designed to determine whether any gross genomic mutations occurred within the adult pluripotent stem cells. Karyotypic analysis was performed using pluripotent stem cells purified from adult male rats using established procedures. Giemsa Banding was used in conjunction with light microscopy to visualize metaphase chromosome spreads. To date over 800 metaphase spreads have been analyzed. We found that the metaphase spreads averaged 42 chromosomes and concluded that these pluripotent stem cells isolated from adult rats have a normal karyotype.  相似文献   

15.
In most animal phyla from insects to mammals, there is a clear division of somatic and germ line cells. This is however not the case in plants and some animal phyla including tunicates, flatworms and the basal phylum Cnidaria, where germ stem cells arise de novo from somatic cells. Piwi-like genes represent essential stem cell genes in diverse multicellular organisms. The cnidarian Piwihomolog Cniwiwas cloned from Podocoryne carnea, a hydrozoan with a full life cycle. CniwiRNA is present in all developmental stages with highest levels in the egg and the medusa. In the adult medusa, Cniwi expression is prominent in the gonads where it likely functions as a germ stem cell gene. The gene is also expressed, albeit at low levels, in differentiated somatic cells like the striated muscle of the medusa. Isolated striated muscle cells can be induced to transdifferentiate into smooth muscle cells which proliferate and differentiate into nerve cells. Cniwi expression is upregulated transiently after induction of transdifferentiation and again when the emerging smooth muscle cells proliferate and differentiate. The continuous low-level expression of an inducible stem cell gene in differentiated somatic cells may underlie the ability to form medusa buds from polyp cells and explain the extraordinary transdifferentation and regeneration potential of Podocoryne carnea.  相似文献   

16.
Germ cell sequestering in Animalia is enlightened by either, launching true germ line along epigenetic or preformistic modes of development, or by somatic embryogenesis, where no true germ line is set aside. The research on germ line-somatic tissue segregation is of special relevancy to colonial organisms like botryllid ascidians that reconstruct, on a weekly basis, completely new sets of male and female gonads in newly formed somatic tissues. By sequencing and evaluating expression patterns of BS-Vasa, the Botryllus schlosseri orthologue of Vasa, in sexually mature and asexual colonies during blastogenesis, we have demonstrated that the BS-Vasa mRNA and protein are not expressed exclusively in germ cell lineages, but appeared in cells repeatedly emerging de novo in the colony, independently of its sexual state. In addition, we recorded an immediate Vasa response to cellular stress (UV irradiation) indicating additional functions to its germ line assignments. To confirm germ lineage exclusivity, we examined the expression of three more stem cell markers (BS-Pl10, Bl-piwi and Oct4). Vasa co-expression with Pl10 and Oct4 was detected in germ line derivatives and with Bl-piwi in somatic tissues. Presumptive primordial germ cells (PGC-like cells), that are Vasa+/Pl10+/Oct4+ and 6-12 μm in diameter, were first detected in wrapped-tail embryos, in oozooids, in sexual/asexual colonies, within a newly identified PGC niche termed as ‘budlet niche’, and in circulating blood borne cells, indicating epigenetic embryogenesis. Alternatively, BS-Vasa co-expression with piwi orthologue, an omnipresent bona fide stemness flag, in non germ line cell populations, may indicate germ cell neogenesis (somatic embryogenesis) in B. schlosseri. Both alternatives are not necessarily mutually exclusive.  相似文献   

17.
Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.  相似文献   

18.
Germline stem cells (GSCs) produce gametes throughout the reproductive life of many animals, and intensive studies have revealed critical roles of BMP signaling to maintain GSC self-renewal in Drospophila adult gonads. Here, we show that BMP signaling is downregulated as testes develop and this regulation controls testis growth, stem cell number, and the number of spermatogonia divisions. Phosphorylated Mad (pMad), the activated Drosophila Smad in germ cells, was restricted from anterior germ cells to GSCs and hub-proximal cells during early larval development. pMad levels in GSCs were then dramatically downregulated from early third larval instar (L3) to late L3, and maintained at low levels in pupal and adult GSCs. The spatial restriction and temporal down-regulation of pMad, reflecting the germ cell response to BMP signaling activity, required action in germ cells of E3 ligase activity of HECT domain protein Smurf. Analyses of Smurf mutant testes and dosage-dependent genetic interaction between Smurf and mad indicated that pMad downregulation was required for both the normal decrease in stem cell number during testis maturation in the pupal stage, and for normal limit of four rounds of spermatogonia cell division for control of germ cell numbers and testis size. Smurf protein was expressed at a constant low level in GSCs and spermatogonia during development. Rescue experiments showed that expression of exogenous Smurf protein in early germ cells promoted pMad downregulation in GSCs in a stage-dependent but concentration-independent manner, suggesting that the competence of Smurf to attenuate response to BMP signaling may be regulated during development. Taken together, our work reveals a critical role for differential attenuation of the response to BMP signaling in GSCs and early germ cells for control of germ cell number and gonad growth during development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号