共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Jeeyun Lee Anjali Jain Phillip Kim Tani Lee Anne Kuller Fred Princen In-Gu Suk Hyeong Kim Joon Oh Park Young Suk Park Sharat Singh Hee Cheol Kim 《PloS one》2014,9(8)
Background
Oncogenic mutational analysis provides predictive guidance for therapeutics such as anti-EGFR antibodies, but it is successful only for a subset of colorectal cancer (CRC) patients.Method
A comprehensive molecular profiling of 120 CRC patients, including 116 primary, 15 liver metastasis, and 1 peritoneal seeding tissue samples was performed to identify the relationship between v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) WT and mutant CRC tumors and clinical outcomes. This included determination of the protein activation patterns of human epidermal receptor 1 (HER1), HER2, HER3, c-MET, insulin-like growth factor 1 receptor (IGF1R), phosphatidylinositide 3-kinase (PI3K), Src homology 2 domain containing (Shc), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) kinases using multiplexed collaborative enzyme enhanced reactive (CEER) immunoassay.Results
KRAS WT and mutated CRCs were not different with respect to the expression of the various signaling molecules. Poor prognosis in terms of early relapse (<2 years) and shorter disease-free survival (DFS) correlated with enhanced activation of PI3K signaling relative to the HER kinase pathway signaling, but not with the KRAS mutational status. KRAS WT CRCs were identified as a mixed prognosis population depending on their level of PI3K signaling. KRAS WT CRCs with high HER1/c-MET index ratio demonstrated a better DFS post-surgery. c-MET and IGF1R activities relative to HER axis activity were considerably higher in early relapse CRCs, suggesting a role for these alternative receptor tyrosine kinases (RTKs) in driving high PI3K signaling.Conclusions
The presented data subclassified CRCs based on their activated signaling pathways and identify a role for c-MET and IGF1R-driven PI3K signaling in CRCs, which is superior to KRAS mutational tests alone. The results from this study can be utilized to identify aggressive CRCs, explain failure of currently approved therapeutics in specific CRC subsets, and, most importantly, generate hypotheses for pathway-guided therapeutic strategies that can be tested clinically. 相似文献3.
4.
《Cell cycle (Georgetown, Tex.)》2013,12(3):219-222
In many systems, activation of the “protein and lipid kinase” phosphoinositide 3-kinase (PI 3-kinase) and its downstream serine-threonine kinase effector, Akt (or Protein Kinase B), provide a potent stimulus for cell proliferation, growth, and survival. In the heart, constrained by the limited proliferative capacity of cardiomyocytes, this pathway plays a key role in regulating cardiomyocyte growth and survival, with little effect on proliferation. Simultaneously, PI 3-kinase and Akt are important modulators of metabolic substrate utilization and cardiomyocyte function. Thus, the convergent signaling pathways controlling so many clinical important phenotypes of the cardiomyocyte suggest it holds promise as a therapeutic target in a variety of cardiac diseases. However, the similar role of PI 3-kinase/Akt signaling in neoplasia suggests the difficulty of activating this pathway in the heart without invoking adverse consequences elsewhere. Here we review evidence regarding the role of PI 3-kinase/Akt in controlling cardiomyocyte growth and survival, and discuss the implications for therapeutic strategies. 相似文献
5.
7.
Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes survival in cells exposed to oxidative stress by inducing the activity of anti-inflammatory mediators and suppressing the expression of pro-inflammatory genes. Though retinal pigment epithelial (RPE) cells naturally produce NPD1 from DHA, investigating the mechanisms through which exogenous NPD1 induces cell survival is essential to assess mechanisms of actions and the potential of this lipid mediator for treatment of retinal degenerative diseases. The PI3K/Akt and mTOR/p70S6K pathways are responsible for supporting cell survival upon exposure to oxidative stress. In human ARPE-19 cells pretreated with NPD1 then exposed to varying concentrations of oxidative stress or repeated exposures to oxidative stress, Akt, mTOR, and p70S6K were phosphorylated to a greater extent and for a greater duration than cells not pretreated with NPD1. In addition to increased phosphorylation, a subsequent decreased rate of apoptosis was observed upon NPD1 treatment. Thus NPD1 bioactivity in RPE cells enhances activation of these pathways and promotes cell integrity and survival. 相似文献
8.
丝氨酸/苏氨酸激酶(serine/threonine kinase,AKT)是真核细胞中参与细胞信号转导的关键分子。目前已经证实PI3K(phosphatidylinositol-3-kinase,PI3K)/AKT信号通路在人类肿瘤、代谢紊乱、肾脏疾病以及精神障碍等疾病中发挥着重要的作用。近年来的研究还发现PI3K/AKT信号通路的激活会对心肌细胞的生长、代谢以及凋亡等活动产生影响,且该通路及其中的很多受体、激酶被证实与心力衰竭关系密切,这使该信号通路在心力衰竭的发病机制、诊断及治疗等方面的研究日益受到重视。总结PI3K/AKT的结构特点、相关信号转导机制及其与心力衰竭的关系将有利于更好地理解心力衰竭的发病机制。 相似文献
9.
Jatinder K. Juss Richard P. Hayhoe Charles E. Owen Ian Bruce Sarah R. Walmsley Andrew S. Cowburn Suhasini Kulkarni Keith B. Boyle Len Stephens Phillip T. Hawkins Edwin R. Chilvers Alison M. Condliffe 《PloS one》2012,7(9)
We have investigated the contribution of individual phosphoinositide 3-kinase (PI3K) Class I isoforms to the regulation of neutrophil survival using (i) a panel of commercially available small molecule isoform-selective PI3K Class I inhibitors, (ii) novel inhibitors, which target single or multiple Class I isoforms (PI3Kα, PI3Kβ, PI3Kδ, and PI3Kγ), and (iii) transgenic mice lacking functional PI3K isoforms (p110δKOγKO or p110γKO). Our data suggest that there is considerable functional redundancy amongst Class I PI3Ks (both Class IA and Class IB) with regard to GM-CSF-mediated suppression of neutrophil apoptosis. Hence pharmacological inhibition of any 3 or more PI3K isoforms was required to block the GM-CSF survival response in human neutrophils, with inhibition of individual or any two isoforms having little or no effect. Likewise, isolated blood neutrophils derived from double knockout PI3K p110δKOγKO mice underwent normal time-dependent constitutive apoptosis and displayed identical GM-CSF mediated survival to wild type cells, but were sensitized to pharmacological inhibition of the remaining PI3K isoforms. Surprisingly, the pro-survival neutrophil phenotype observed in patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) was resilient to inactivation of the PI3K pathway. 相似文献
10.
Shang Guo Hector Lopez-Marquez Kenneth C. Fan Edwin Choy Gregory Cote David Harmon G. Petur Nielsen Cao Yang Changqing Zhang Henry Mankin Francis J. Hornicek Darrell R. Borger Zhenfeng Duan 《PloS one》2014,9(4)
While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma. 相似文献
11.
Julia Jellusova 《Critical reviews in biochemistry and molecular biology》2016,51(5):359-378
B cell growth and proliferation is tightly regulated by signaling through the B cell receptor and by other membrane bound receptors responding to different cytokines. The PI3K signaling pathway has been shown to play a crucial role in B cell activation, differentiation and survival. Activated B cells undergo metabolic reprograming in response to changing energetic and biosynthetic demands. B cells also need to be able to coordinate metabolic activity and proliferation with nutrient availability. The PI3K signaling network has been implicated in regulating nutrient acquisition, utilization and biosynthesis, thus integrating receptor-mediated signaling with cell metabolism. In this review, we discuss the current knowledge about metabolic changes induced in activated B cells, strategies to adapt to metabolic stress and the role of PI3K signaling in these processes. 相似文献
12.
Antonia Patruno Mirko Pesce Alfredo Grilli Lorenza Speranza Sara Franceschelli Maria Anna De Lutiis Giovina Vianale Erica Costantini Paolo Amerio Raffaella Muraro Mario Felaco Marcella Reale 《PloS one》2015,10(10)
Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing. 相似文献
13.
14.
15.
《Cell cycle (Georgetown, Tex.)》2013,12(18):2268-2275
Natural (intrinsic) resistance of many tumor types to DNA damaging agents is closely associated with their capacity to undergo robust cell cycle arrest in G2/M. G2 arrest is regulated by the DNA damage checkpoint and by survival signaling, with a potential role of PI3K/Akt in checkpoint function. In this work, we wanted to clarify if inhibition of multiple checkpoint/survival pathways may confer better efficacy in the potentiation of genotoxic agents compared to inhibition of either pathway alone. We compared the influence of UCN-01, which affects both the DNA damage checkpoint and PI3K/Akt-mediated survival signaling, with the PI3K inhibitors wortmannin and LY294002 in p53-deficient M1 acute myeloid leukemia cells treated with the DNA damaging agent cisplatin. Our results show that direct inhibition of PI3K/Akt in G2-arrested cells by wortmannin or LY294002 strongly enhanced the cytotoxicity of cisplatin without influencing the G2 checkpoint. Unexpectedly, dual inhibition of both survival and checkpoint signaling by UCN-01, also increased the cytotoxicity of cisplatin, but to a lesser degree than wortmannin or LY294002. The differences in cytotoxicity were accompanied by differences in cell death pathways: direct inhibition of PI3K/Akt was accompanied by rapid apoptotic cell death during G2, whereas cells underwent mitotic transit and cell division followed by cell death during G1 when both checkpoint and survival signaling were inhibited. Our results elucidate a novel function for PI3K/Akt as a survival factor during DNA damage-induced G2 arrest and could have important pharmacological consequences for the application of response modulators in p53-deficient tumors with strong survival signaling. 相似文献
16.
17.
Brian?P. Ziemba John?E. Burke Glenn Masson Roger?L. Williams Joseph?J. Falke 《Biophysical journal》2016,110(8):1811-1825
In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca2+-protein kinase C (Ca2+-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca2+-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca2+-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca2+-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces. 相似文献
18.
Francesco Pappalardo Giulia Russo Saverio Candido Marzio Pennisi Salvatore Cavalieri Santo Motta James A. McCubrey Ferdinando Nicoletti Massimo Libra 《PloS one》2016,11(3)
Background
Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease.Result
Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive. 相似文献19.
Background
Ursolic acid (UA), a triterpenoid compound, is reported to have a glucose-lowering effect. However, the mechanisms are not fully understood. Adipose tissue is one of peripheral tissues that collectively control the circulating glucose levels.Objective
The objective of the present study was to determine the effect and further the mechanism of action of UA in adipocytes.Methods and Results
The 3T3-L1 preadipocytes were induced to differentiate and treated with different concentrations of UA. NBD-fluorescent glucose was used as the tracer to measure glucose uptake and Western blotting used to determine the expression and activity of proteins involved in glucose transport. It was found that 2.5, 5 and 10 µM of UA promoted glucose uptake in a dose-dependent manner (17%, 29% and 35%, respectively). 10 µM UA-induced glucose uptake with insulin stimulation was completely blocked by the phosphatidylinositol (PI) 3-kinase (PI3K) inhibitor wortmannin (1 µM), but not by SB203580 (10 µM), the inhibitor of mitogen-activated protein kinase (MAPK), or compound C (2.5 µM), the inhibitor of AMP-activated kinase (AMPK) inhibitor. Furthmore, the downstream protein activities of the PI3K pathway, phosphoinositide-dependent kinase (PDK) and phosphoinositide-dependent serine/threoninekinase (AKT) were increased by 10 µM of UA in the presence of insulin. Interestingly, the activity of AS160 and protein kinase C (PKC) and the expression of glucose transporter 4 (GLUT4) were stimulated by 10 µM of UA under either the basal or insulin-stimulated status. Moreover, the translocation of GLUT4 from cytoplasm to cell membrane was increased by UA but decreased when the PI3K inhibitor was applied.Conclusions
Our results suggest that UA stimulates glucose uptake in 3T3-L1 adipocytes through the PI3K pathway, providing important information regarding the mechanism of action of UA for its anti-diabetic effect. 相似文献20.
Stephanie Str?bele Matthias Schneider Lukas Schneele Markus D. Siegelin Lisa Nonnenmacher Shaoxia Zhou Georg Karpel-Massle Mike-Andrew Westhoff Marc-Eric Halatsch Klaus-Michael Debatin 《PloS one》2015,10(6)
Glioblastoma multiforme (GBM) is the most common primary brain tumor and among the most difficult to treat malignancies per se. In almost 90% of all GBM alterations in the PI3K/Akt/mTOR have been found, making this survival cascade a promising therapeutic target, particular for combination therapy that combines an apoptosis sensitizer, such as a pharmacological inhibitor of PI3K, with an apoptosis inducer, such as radio- or chemotherapy. However, while in vitro data focusing mainly on established cell lines has appeared rather promising, this has not translated well to a clinical setting. In this study, we analyze the effects of the dual kinase inhibitor PI-103, which blocks PI3K and mTOR activity, on three matched pairs of GBM stem cells/differentiated cells. While blocking PI3K-mediated signaling has a profound effect on cellular proliferation, in contrast to data presented on two GBM cell lines (A172 and U87) PI-103 actually counteracts the effect of chemotherapy. While we found no indications for a potential role of the PI3K signaling cascade in differentiation, we saw a clear and strong contribution to cellular motility and, by extension, invasion. While blocking PI3K-mediated signaling concurrently with application of chemotherapy does not appear to be a valid treatment option, pharmacological inhibitors, such as PI-103, nevertheless have an important place in future therapeutic approaches. 相似文献