首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeographic inference allows reconstruction of past geographical spread of pathogens or living organisms by integrating genetic and geographic data. A popular model in continuous phylogeography—with location data provided in the form of latitude and longitude coordinates—describes spread as a Brownian motion (Brownian Motion Phylogeography, BMP) in continuous space and time, akin to similar models of continuous trait evolution. Here, we show that reconstructions using this model can be strongly affected by sampling biases, such as the lack of sampling from certain areas. As an attempt to reduce the effects of sampling bias on BMP, we consider the addition of sequence-free samples from under-sampled areas. While this approach alleviates the effects of sampling bias, in most scenarios this will not be a viable option due to the need for prior knowledge of an outbreak’s spatial distribution. We therefore consider an alternative model, the spatial Λ-Fleming-Viot process (ΛFV), which has recently gained popularity in population genetics. Despite the ΛFV’s robustness to sampling biases, we find that the different assumptions of the ΛFV and BMP models result in different applicabilities, with the ΛFV being more appropriate for scenarios of endemic spread, and BMP being more appropriate for recent outbreaks or colonizations.  相似文献   

2.
Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.  相似文献   

3.
Primates are among the most observable and best studied mammalian orders, yet the distribution of sampling effort by primatologists has inevitably concentrated on a few genera and a limited number of study sites. We present the first systematic review of sampling effort and associated biases in wild primate field research, focusing on dietary studies across the Neotropics. Our literature review of all 24 neotropical primate ecospecies spans 42 years (1969–2011) and covers 290 dietary studies at 164 study sites across 17 countries. We use a standardized measure of sampling effort to assimilate data sets derived from multiple methodologies and attempt to understand the distribution of effort (total equivalent to 193,804 h) using geographic variables and primate species traits. Results indicate that there are both geographic and taxonomic biases, with sampling effort generally skewed towards large-bodied species occupying large geographic ranges, and concentrated at a select few primatology research hubs. We also note that full primate assemblages at any given study site are rarely investigated. Our assessment thus reveals severely undersampled primate taxa and geographic regions that must be considered in future research. Current biases could be ameliorated by deliberately targeting poorly studied genera anywhere in their geographic distribution, well-studied genera in poorly studied regions, and striving to study multiple sympatric taxa within a single site. Although continued inequalities in sampling effort are probably inevitable, this study shows that this need not inhibit successful compilations and meta-analyses, provided that adequate data on feeding records and sampling effort can be made available.  相似文献   

4.
The life history characteristics of some elasmobranchs make them particularly vulnerable to fishing mortality; about a third of all species are listed by the IUCN as Threatened or Near Threatened. Marine Protected Areas (MPAs) have been suggested as a tool for conservation of elasmobranchs, but they are likely to be effective only if such populations respond to fishing impacts at spatial-scales corresponding to MPA size. Using the example of the Celtic Sea, we modelled elasmobranch biomass (kg h−1) in fisheries-independent survey hauls as a function of environmental variables and ‘local’ (within 20 km radius) fishing effort (h y−1) recorded from Vessel Monitoring Systems data. Model selection using AIC suggested strongest support for linear mixed effects models in which the variables (i) fishing effort, (ii) geographic location and (iii) demersal fish assemblage had approximately equal importance in explaining elasmobranch biomass. In the eastern Celtic Sea, sampling sites that occurred in the lowest 10% of the observed fishing effort range recorded 10 species of elasmobranch including the critically endangered Dipturus spp. The most intensely fished 10% of sites had only three elasmobranch species, with two IUCN listed as Least Concern. Our results suggest that stable spatial heterogeneity in fishing effort creates de facto refugia for elasmobranchs in the Celtic Sea. However, changes in the present fisheries management regime could impair the refuge effect by changing fisher''s behaviour and displacing effort into these areas.  相似文献   

5.
We inferred the population densities of blue whales (Balaenoptera musculus) and short-beaked common dolphins (Delphinus delphis) in the Northeast Pacific Ocean as functions of the water-column’s physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT). Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge). Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more southern portion of the Humboldt Current System. We posit that such reductions in available foraging habitats during climatic disturbances could incur high energetic costs on these populations, ultimately affecting individual fitness and survival.  相似文献   

6.
7.
The diversity pattern of holothurian echinoderms during the late Triassic-early Jurassic is quantitatively analysed to examine the effect of different taxonomic approaches. Whereas sclerite morphospecies indicate major faunal change during the Norian with significant extinction in the Upper Norian. changes are less pronounced for parafamilies and least for biologically based groups. Perceived diversity patterns are subject to bias. including a significant effect of relative research effort on morphospecies and parafamily data. A large proportion of Lazarus taxa in the Rhaetian-Hettangian indicates a sampling problem due to preservational or geographic bias. * Holothurian. Norian, Rhaetian, Hettangian, taxonomic diversity, origination, extinction .  相似文献   

8.
Species distribution models (SDMs) are often calibrated using presence‐only datasets plagued with environmental sampling bias, which leads to a decrease of model accuracy. In order to compensate for this bias, it has been suggested that background data (or pseudoabsences) should represent the area that has been sampled. However, spatially‐explicit knowledge of sampling effort is rarely available. In multi‐species studies, sampling effort has been inferred following the target‐group (TG) approach, where aggregated occurrence of TG species informs the selection of background data. However, little is known about the species‐ specific response to this type of bias correction. The present study aims at evaluating the impacts of sampling bias and bias correction on SDM performance. To this end, we designed a realistic system of sampling bias and virtual species based on 92 terrestrial mammal species occurring in the Mediterranean basin. We manipulated presence and background data selection to calibrate four SDM types. Unbiased (unbiased presence data) and biased (biased presence data) SDMs were calibrated using randomly distributed background data. We used real and TG‐estimated sampling efforts in background selection to correct for sampling bias in presence data. Overall, environmental sampling bias had a deleterious effect on SDM performance. In addition, bias correction improved model accuracy, and especially when based on spatially‐explicit knowledge of sampling effort. However, our results highlight important species‐specific variations in susceptibility to sampling bias, which were largely explained by range size: widely‐distributed species were most vulnerable to sampling bias and bias correction was even detrimental for narrow‐ranging species. Furthermore, spatial discrepancies in SDM predictions suggest that bias correction effectively replaces an underestimation bias with an overestimation bias, particularly in areas of low sampling intensity. Thus, our results call for a better estimation of sampling effort in multispecies system, and cautions the uninformed and automatic application of TG bias correction.  相似文献   

9.
The fossil record provides direct empirical data for understanding macroevolutionary patterns and processes. Inherent biases in the fossil record are well known to confound analyses of this data. Sampling bias proxies have been used as covariates in regression models to test for such biases. Proxies, such as formation count, are associated with paleobiodiversity, but are insufficient for explaining species dispersal owing to a lack of geographic context. Here, we develop a sampling bias proxy that incorporates geographic information and test it with a case study on early tetrapodomorph biogeography. We use recently-developed Bayesian phylogeographic models and a new supertree of early tetrapodomorphs to estimate dispersal rates and ancestral habitat locations. We find strong evidence that geographic sampling bias explains supposed radiations in dispersal rate (potential adaptive radiations). Our study highlights the necessity of accounting for geographic sampling bias in macroevolutionary and phylogenetic analyses and provides an approach to test for its effect.  相似文献   

10.
Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a ‘Big Data’ approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence‐only or presence–absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi‐source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter‐ or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi‐source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA‐based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.  相似文献   

11.
Strategies to minimize dengue transmission commonly rely on vector control, which aims to maintain Ae. aegypti density below a theoretical threshold. Mosquito abundance is traditionally estimated from mark-release-recapture (MRR) experiments, which lack proper analysis regarding accurate vector spatial distribution and population density. Recently proposed strategies to control vector-borne diseases involve replacing the susceptible wild population by genetically modified individuals’ refractory to the infection by the pathogen. Accurate measurements of mosquito abundance in time and space are required to optimize the success of such interventions. In this paper, we present a hierarchical probabilistic model for the estimation of population abundance and spatial distribution from typical mosquito MRR experiments, with direct application to the planning of these new control strategies. We perform a Bayesian analysis using the model and data from two MRR experiments performed in a neighborhood of Rio de Janeiro, Brazil, during both low- and high-dengue transmission seasons. The hierarchical model indicates that mosquito spatial distribution is clustered during the winter (0.99 mosquitoes/premise 95% CI: 0.80–1.23) and more homogeneous during the high abundance period (5.2 mosquitoes/premise 95% CI: 4.3–5.9). The hierarchical model also performed better than the commonly used Fisher-Ford’s method, when using simulated data. The proposed model provides a formal treatment of the sources of uncertainty associated with the estimation of mosquito abundance imposed by the sampling design. Our approach is useful in strategies such as population suppression or the displacement of wild vector populations by refractory Wolbachia-infected mosquitoes, since the invasion dynamics have been shown to follow threshold conditions dictated by mosquito abundance. The presence of spatially distributed abundance hotspots is also formally addressed under this modeling framework and its knowledge deemed crucial to predict the fate of transmission control strategies based on the replacement of vector populations.  相似文献   

12.
Using the Southern African Bird Atlas Project (SABAP2) as a case study, we examine the possible determinants of spatial bias in volunteer sampling effort and how well such biased data represent environmental gradients across the area covered by the atlas. For each province in South Africa, we used generalized linear mixed models to determine the combination of variables that explain spatial variation in sampling effort (number of visits per 5′ × 5′ grid cell, or “pentad”). The explanatory variables were distance to major road and exceptional birding locations or “sampling hubs,” percentage cover of protected, urban, and cultivated area, and the climate variables mean annual precipitation, winter temperatures, and summer temperatures. Further, we used the climate variables and plant biomes to define subsets of pentads representing environmental zones across South Africa, Lesotho, and Swaziland. For each environmental zone, we quantified sampling intensity, and we assessed sampling completeness with species accumulation curves fitted to the asymptotic Lomolino model. Sampling effort was highest close to sampling hubs, major roads, urban areas, and protected areas. Cultivated area and the climate variables were less important. Further, environmental zones were not evenly represented by current data and the zones varied in the amount of sampling required representing the species that are present. SABAP2 volunteers' preferences in birding locations cause spatial bias in the dataset that should be taken into account when analyzing these data. Large parts of South Africa remain underrepresented, which may restrict the kind of ecological questions that may be addressed. However, sampling bias may be improved by directing volunteers toward undersampled regions while taking into account volunteer preferences.  相似文献   

13.
  1. Species distribution models (SDM) have been increasingly developed in recent years, but their validity is questioned. Their assessment can be improved by the use of independent data, but this can be difficult to obtain and prohibitive to collect. Standardized data from citizen science may be used to establish external evaluation datasets and to improve SDM validation and applicability.
  2. We used opportunistic presence‐only data along with presence–absence data from a standardized citizen science program to establish and assess habitat suitability maps for 9 species of amphibian in western France. We assessed Generalized Additive and Random Forest Models’ performance by (1) cross‐validation using 30% of the opportunistic dataset used to calibrate the model or (2) external validation using different independent datasets derived from citizen science monitoring. We tested the effects of applying different combinations of filters to the citizen data and of complementing it with additional standardized fieldwork.
  3. Cross‐validation with an internal evaluation dataset resulted in higher AUC (Area Under the receiver operating Curve) than external evaluation causing overestimation of model accuracy and did not select the same models; models integrating sampling effort performed better with external validation. AUC, specificity, and sensitivity of models calculated with different filtered external datasets differed for some species. However, for most species, complementary fieldwork was not necessary to obtain coherent results, as long as the citizen science data were strongly filtered.
  4. Since external validation methods using independent data are considered more robust, filtering data from citizen sciences may make a valuable contribution to the assessment of SDM. Limited complementary fieldwork with volunteer''s participation to complete ecological gradients may also possibly enhance citizen involvement and lead to better use of SDM in decision processes for nature conservation.
  相似文献   

14.
Population dynamic models combine density dependence and environmental effects. Ignoring sampling uncertainty might lead to biased estimation of the strength of density dependence. This is typically addressed using state‐space model approaches, which integrate sampling error and population process estimates. Such models seldom include an explicit link between the sampling procedures and the true abundance, which is common in capture–recapture settings. However, many of the models proposed to estimate abundance in the presence of capture heterogeneity lead to incomplete likelihood functions and cannot be straightforwardly included in state‐space models. We assessed the importance of estimating sampling error explicitly by taking an intermediate approach between ignoring uncertainty in abundance estimates and fully specified state‐space models for density‐dependence estimation based on autoregressive processes. First, we estimated individual capture probabilities based on a heterogeneity model for a closed population, using a conditional multinomial likelihood, followed by a Horvitz–Thompson estimate for abundance. Second, we estimated coefficients of autoregressive models for the log abundance. Inference was performed using the methodology of integrated nested Laplace approximation (INLA). We performed an extensive simulation study to compare our approach with estimates disregarding capture history information, and using R‐package VGAM, for different parameter specifications. The methods were then applied to a real data set of gray‐sided voles Myodes rufocanus from Northern Norway. We found that density‐dependence estimation was improved when explicitly modeling sampling error in scenarios with low process variances, in which differences in coverage reached up to 8% in estimating the coefficients of the autoregressive processes. In this case, the bias also increased assuming a Poisson distribution in the observational model. For high process variances, the differences between methods were small and it appeared less important to model heterogeneity.  相似文献   

15.
Reptiles are an understudied group in road ecology, despite evidence of their high vulnerability to road mortality. Recently, trait-based models have been demonstrated to be valuable tools for explaining and predicting road mortality risks for birds and mammals. The present study aimed to apply such models to reptiles for the first time. We fitted eight random forest regression models, controlling for different survey design variables, to explain 782 empirical road-kill rates for Brazilian reptiles and selected the best-performing model to predict road mortality risks for 572 continental species. The results showed that species that are habitat generalists, omnivorous, viviparous, cathemeral, and have intermediate clutch or litter sizes are at a higher risk of being road-killed. The relationships for other traits included in our models were uncertain, but our findings suggest that population density and species-specific behavioural responses to roads and traffic may play an important role in road mortality risks. Geographical location and survey design variables (especially sampling speed and sampling time) were more important in explaining the variance of the empirical road-kill rates than any of the tested ecological and functional traits. Besides adding evidence of the vulnerability of the Amazon region to vertebrate road-kills, this study highlights some similarities between the relationships identified here and those found for birds and mammals (such as with body mass and habitat breadth). We also corroborate that trait-based models are useful tools to aid in conservation efforts but indicate that they can be biased by the methodologies used to collect empirical data. Future road-kill surveys should therefore use methods specifically designed for reptiles and estimate both observer efficiency and carcass removal rates.  相似文献   

16.
A primary challenge of animal surveys is to understand how to reliably sample populations exhibiting strong spatial heterogeneity. Building upon recent findings from survey, tracking and tagging data, we investigate spatial sampling of a seasonally resident population of Atlantic bluefin tuna in the Gulf of Maine, Northwestern Atlantic Ocean. We incorporate empirical estimates to parameterize a stochastic population model and simulate measurement designs to examine survey efficiency and precision under variation in tuna behaviour. We compare results for random, systematic, stratified, adaptive and spotter-search survey designs, with spotter-search comprising irregular transects that target surfacing schools and known aggregation locations (i.e., areas of expected high population density) based on a priori knowledge. Results obtained show how survey precision is expected to vary on average with sampling effort, in agreement with general sampling theory and provide uncertainty ranges based on simulated variance in tuna behaviour. Simulation results indicate that spotter-search provides the highest level of precision, however, measurable bias in observer-school encounter rate contributes substantial uncertainty. Considering survey bias, precision, efficiency and anticipated operational costs, we propose that an adaptive-stratified sampling alone or a combination of adaptive-stratification and spotter-search (a mixed-layer design whereby a priori information on the location and size of school aggregations is provided by sequential spotter-search sampling) may provide the best approach for reducing uncertainty in seasonal abundance estimates.
Nathaniel K. NewlandsEmail:
  相似文献   

17.
提高生态位模型转移能力来模拟入侵物种 的潜在分布   总被引:5,自引:0,他引:5  
生态位模型利用物种分布点所关联的环境变量去推算物种的生态需求, 模拟物种的分布。在模拟入侵物种分布时, 经典生态位模型包括模型构建于物种本土分布地, 然后将其转移并投射至另一地理区域, 来模拟入侵物种的潜在分布。然而在模型运用时, 出现了模型的转移能力较低、模拟的结果与物种的实际分布不相符的情况, 由此得出了生态位漂移等不恰当的结论。提高生态位模型的转移能力, 可以准确地模拟入侵物种的潜在分布, 为入侵种的风险评估提供参考。作者以入侵种茶翅蝽(Halyomorpha halys)和互花米草(Spartina alterniflora)为例, 从模型的构建材料(即物种分布点和环境变量)入手, 全面阐述提高模型转移能力的策略。在构建模型之前, 需要充分了解入侵物种的生物学特性、种群平衡状态、本土地理分布范围及物种的生物历史地理等方面的知识。在模型构建环节上, 物种分布点不仅要充分覆盖物种的地理分布和生态空间的范围, 同时要降低物种采样点偏差; 环境变量的选择要充分考虑其对物种分布的限制作用、各环境变量之间的空间相关性, 以及不同地理种群间生态空间是否一致, 同时要降低环境变量的空间维度; 模型构建区域要真实地反映物种的地理分布范围, 并考虑种群的平衡状态。作者认为, 在生态位保守的前提下, 如果模型是构建在一个合理方案的基础上, 生态位模型的转移能力是可以保证的, 在以模型转移能力较低的现象来阐述生态位分化时需要引起注意。  相似文献   

18.
Climate change threatens biodiversity worldwide, however predicting how particular species will respond is difficult because climate varies spatially, complex factors regulate population abundance, and species vary in their susceptibility to climate change. Studies need to incorporate these factors with long-term data in order to link climate change to population abundance. We used 40 years of lizard abundance data and local climate data from Barro Colorado Island to ask how climate, total lizard abundance and cohort-specific abundance have changed over time, and how total and cohort-specific abundance relate to climate variables including those predicted to make the species vulnerable to climate change (i.e. temperatures exceeding preferred body temperature). We documented a decrease in lizard abundance over the last 40 years, and changes in the local climate. Population growth rate was related to the previous years’ southern oscillation index; increasing following cooler-wetter, la niña years, decreasing following warmer-drier, el nino years. Within-year recruitment was negatively related to rainfall and minimum temperature. This study simultaneously identified climatic factors driving long-term population fluctuations and climate variables influencing short-term annual recruitment, both of which may be contributing to the population decline and influence the population’s future persistence.  相似文献   

19.
Estimates of paleodiversity patterns through time have relied on datasets that lump taxonomic occurrences from geographic areas of varying size per interval of time. In essence, such estimates assume that the species–area effect, whereby more species are recorded from larger geographic areas, is negligible for fossil data. We tested this assumption by using the newly developed Miocene Mammal Mapping Project database of western North American fossil mammals and its associated analysis tools to empirically determine the geographic area that contributed to species diversity counts in successive temporal bins. The results indicate that a species–area effect markedly influences counts of fossil species, just as variable spatial sampling influences diversity counts on the modern landscape. Removing this bias suggests some traditionally recognized peaks in paleodiversity are just artifacts of the species–area effect while others stand out as meriting further attention. This discovery means that there is great potential for refining existing time-series estimates of paleodiversity, and for using species–area relationships to more reliably understand the magnitude and timing of such biotically important events as extinction, lineage diversification, and long-term trends in ecological structure.  相似文献   

20.
Spatial capture-recapture (SCR) models have advanced our ability to estimate population density for wide ranging animals by explicitly incorporating individual movement. Though these models are more robust to various spatial sampling designs, few studies have empirically tested different large-scale trap configurations using SCR models. We investigated how extent of trap coverage and trap spacing affects precision and accuracy of SCR parameters, implementing models using the R package secr. We tested two trapping scenarios, one spatially extensive and one intensive, using black bear (Ursus americanus) DNA data from hair snare arrays in south-central Missouri, USA. We also examined the influence that adding a second, lower barbed-wire strand to snares had on quantity and spatial distribution of detections. We simulated trapping data to test bias in density estimates of each configuration under a range of density and detection parameter values. Field data showed that using multiple arrays with intensive snare coverage produced more detections of more individuals than extensive coverage. Consequently, density and detection parameters were more precise for the intensive design. Density was estimated as 1.7 bears per 100 km2 and was 5.5 times greater than that under extensive sampling. Abundance was 279 (95% CI = 193–406) bears in the 16,812 km2 study area. Excluding detections from the lower strand resulted in the loss of 35 detections, 14 unique bears, and the largest recorded movement between snares. All simulations showed low bias for density under both configurations. Results demonstrated that in low density populations with non-uniform distribution of population density, optimizing the tradeoff among snare spacing, coverage, and sample size is of critical importance to estimating parameters with high precision and accuracy. With limited resources, allocating available traps to multiple arrays with intensive trap spacing increased the amount of information needed to inform parameters with high precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号