首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
通过长距离PCR方法,克隆了鳜(Siniperca chuatsi Basilewsky)肠道内寄生虫——强壮粗体虫(Hebesoma violentum Van Cleave)线粒体基因组全长序列,共13393 bp(GenBank登录号:KC415004),有36个基因,其中蛋白编码基因12个,核糖体基因2个,tRNA22个。所有基因均由线粒体基因组同一条链按同一个方向转录。利用该线粒体基因组和已经报道的一些轮虫纲种类的线粒体基因组序列,构建了棘头虫和轮虫的系统发育树。系统发育研究表明:包括强壮粗体虫、隐藏新棘虫Pallisentis celatus(Van Cleave)和Paratenuisentis ambiguous(Van Cleave)在内的始新棘头虫纲(Eoacanthocephala)与古棘头虫纲(Palaeacanthocephala)亲缘关系较近,聚为一枝后再与原棘头虫纲(Archiacanthocephala)聚在一起;棘头虫与双巢类轮虫(Bdelloid)亲缘关系最近,聚为一枝,然后再与单巢类轮虫(Monogonont)聚在一起,表明棘头虫和轮虫具有较近的亲缘关系。  相似文献   

2.
黄勃  李振刚等 《菌物系统》2001,20(3):373-377
对近藤虫疠霉和伊萨卡虫瘴霉的18SrRNA基因进行克隆测序(登录号分别为AF351133和AF351134),并于GenBank中的新蚜虫疠霉相应序列(登录号AF052405)进行比较,近藤虫疠霉有43个碱基差异,而伊萨卡虫瘴霉仅有38个碱基差异,这证明近藤虫疠霉作为一个独立的种存在是合理的,系统发育进化树发现近藤虫疠霉和伊萨卡虫瘴霉的亲缘关系比它和新蚜虫疠霉更近,这时Humber的新系统提出了异议。  相似文献   

3.
根据传统形态学特征的系统分类学研究,将瘦尾虫属(Uroleptus)归入尾柱目(Urostylida).但是,基于单基因和多基因联合的分子系统发育学分析支持瘦尾虫属与散毛目内部类群的亲缘关系更近.为进一步探讨旋唇纲(Spirotrichea)内部类群的系统发育关系以及瘦尾虫属的系统发育地位,我们对四种旋唇纲纤毛虫(澳大...  相似文献   

4.
福建棘头虫记述Ⅱ   总被引:4,自引:2,他引:2  
寄生于脊椎动物的棘头虫(Acanthocephala Rudolphi,1808),作者(1966)曾报告过40种。近年来,在福建各地又采得一些种类,经初步鉴定有11种,其中有7个新种,兹记述于后。标本保存于福建师范大学寄生动物研究室。 一、四旋棘科Quadrigyridae Van Cleave,1920  相似文献   

5.
我国寄生于鱼类的棘头虫   总被引:2,自引:2,他引:0  
我国寄生于鱼类的棘头虫,过去已有Van Cleave(1926),Harada(1938),Achmerow(1959),汪溥钦(1966,1980),湖北省水生生物研究所等(1973),左文功等(1974),毛国良(1979)等的研究报告。我们近年来在福建沿海和山区采集鱼类寄生虫,又采得一些种类。此外,云南水产研究所鱼病室郭起治同志赠送昆明鱼类棘头虫标本,华中农学院鱼  相似文献   

6.
克隆得到2种缘毛类纤毛虫——钟形钟虫(Vorticella campanula)和螅状独缩虫(Carchesium polypinum)的胞质Hsp70基因部分序列,长度均为438bp,编码146个氨基酸。以细菌为外类群,利用最大似然法和邻接法构建包括其他5种纤毛虫在内的共26个物种的Hsp70基因氨基酸序列系统发育树,其拓扑结构显示:V.campanula和C.polypinum聚在一起,并与另2种寡膜纲的嗜热四膜虫(Tetrahymena thermophila)及草履虫(Paramecium tetraurelia)聚为姊妹枝,提示了缘毛类纤毛虫为单系,且隶属于寡膜纲的系统发育地位。  相似文献   

7.
为了解小长蝽Nysius ericae(Schilling)线粒体基因组结构及长蝽总科的分子系统发育关系。本试验采用Illumina MiSeq测序平台对小长蝽线粒体基因进行测序,对基因组序列进行拼装、注释和特征分析,利用最大似然法和贝叶斯法构建基于12种长蝽总科昆虫线粒体全基因组核苷酸序列的系统发育树。小长蝽线粒体基因组全长为16 330 bp(GenBank登录号:MW465654),基因组包括13个蛋白编码基因(PCGs),22个tRNA基因,2个rRNA基因和1段非编码控制区。11个蛋白质编码基因的起始密码子为典型的ATN;cox1,nad4l的起始密码子为TTG。cob的终止密码子为TAG,其余蛋白编码基因的终止密码子为TAA。只有trnS1缺少DHU臂,其余tRNA基因均能形成典型的三叶草结构。12种长蝽总科昆虫线粒体全基因组序列构建的昆虫系统发育树结果显示,小长蝽与Nysius plebeius具有更近的亲缘关系,且与传统形态学分类基本一致。小长蝽线粒体基因组符合长蝽总科线粒体基因组的一般特征。结果表明小长蝽与N.plebeius的亲缘关系更近。  相似文献   

8.
基于线粒体基因组的藏马高原适应及系统发育分析   总被引:11,自引:0,他引:11  
研究测定了西藏那曲(4,500m)、云南中甸(3,300m)、云南德钦(3,300m)地区3匹藏马线粒体全基因组序列。3个地区的藏马线粒体基因组全长以及结构均与韩国济州岛的马类似,但比瑞典马线粒体基因组短。藏马基因组在DNA序列上的两两相似性达993%。通过对线粒体蛋白编码区的分析发现,NADH6基因的蛋白序列在三匹藏马中均表现快速进化的现象。这表明NADH6基因在藏马高原适应进化过程中扮演着重要角色。此外,利用7匹藏马的D—loop区域序列以及与其亲缘关系较近的马的序列首次构建的藏马的系统发育树显示,那曲藏马与中甸、德钦藏马属于不同的分支,且存在较大的遗传多样性,表明藏马可能为多地区起源。  相似文献   

9.
赵亚男  李朝品 《昆虫学报》2020,63(3):354-364
【目的】测定和分析甜果螨Carpoglyphus lactis线粒体基因组全序列,并在线粒体基因组水平探讨其在真螨总目(Acariformes)中的系统发育地位,为真螨总目分类及果螨科线粒体基因组研究提供科学依据。【方法】挑取实验室饲养的甜果螨成螨,用传统的酚氯仿抽提法和试剂盒提取法提取甜果螨基因组DNA。然后采用节肢动物或螨类线粒体基因的通用引物PCR扩增出甜果螨线粒体基因cox1,cob,rrnS和nad4-nad5的部分序列;再设计种特异性引物进行Long-PCR扩增和步移法测序,测出甜果螨线粒体基因组全序列。应用SeqMan, SEQUIN 9.0和tRNAscan等生物信息学软件,对甜果螨线粒体基因组的基因结构等进行生物信息学分析。最后基于17种真螨总目螨类的蛋白质编码基因,采用最大似然法构建系统发育树。【结果】甜果螨线粒体全基因组总长为14 060 bp(GenBank登录号:MN073839),为典型的闭合双链DNA分子,共由37个基因组成,包括13个蛋白质编码基因(PCGs)、22个tRNA基因和2个rRNA基因;甜果螨线粒体基因组还包括1个大的非编码区(large non-coding region, LNR)。系统发育分析结果显示,甜果螨Carpoglyphus lactis属于无气门亚目粉螨总科(Acaroidae),与椭圆食粉螨Aleuroglyphus ovatus构成一支。粉螨总科(Acaroidae)和薄口螨总科(Histiostomatoidae)聚成一簇,与痒螨股(Psoroptidia)构成姐妹群。【结论】本研究首次获得并分析了甜果螨线粒体基因组全序列。甜果螨与椭圆食粉螨的亲缘关系较近。  相似文献   

10.
采用ISSR分子标记技术,尝试对四种五株纤毛虫(褶累枝虫(Epistylis plicatilis)、绿草履虫(Paramecium bursaria)、多态喇叭虫(Stentor polymorphus)、嗜热四膜虫BF1株(Tetrahymena thermophilaBF1)和嗜热四膜虫BF5株(T.ther-mophilaBF5))进行遗传关系研究。用13个ISSR引物对五株纤毛虫进行扩增,六个ISSR引物获得多态片段。根据Nei s遗传距离矩阵构建了五株纤毛虫的遗传关系树状图。UPGMA,NJ聚类图表明:两株嗜热四膜虫最先聚在一起;其次是褶累枝虫和多态喇叭虫聚在一起,然后再与嗜热四膜虫聚在一起;咽膜亚纲的绿草履虫形成独立的一枝。结果显示:①缘毛亚纲纤毛虫可能是寡膜纲中较独特的一个类群,建议提升缘毛亚纲纤毛虫的分类地位;②缘毛亚纲褶累枝虫与膜口亚纲嗜热四膜虫的亲缘关系近于咽膜亚纲绿草履虫,在寡膜纲中绿草履虫处于原始地位;③五株纤毛虫基因组中均含有微卫星DNA序列:(GTG)4(、GACA)4(、AG)8(、CAA)6和(GAA)6。  相似文献   

11.
Hebesoma violentum Van Cleave, 1928, is redescribed from 155 paratypes from Van Cleave's original 1921 and 1923 collections in China. The present distribution of H. violentum in China and the Soviet Union is reported and the uncertain status of Hebesoma derosum Gupta and Jain, 1973, examined.  相似文献   

12.
Ma PF  Guo ZH  Li DZ 《PloS one》2012,7(1):e30297

Background

Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change.

Methodology/Principal Findings

We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses.

Conclusions/Significance

Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.  相似文献   

13.
Phylogenetic relationships among Syndermata have been extensively debated, mainly because the sister-group of the Acanthocephala has not yet been clearly identified from analyses of morphological and molecular data. Here we conduct phylogenetic analyses on samples from the 4 classes of Acanthocephala (Archiacanthocephala, Eoacanthocephala, Polyacanthocephala, and Palaeacanthocephala) and the 3 Rotifera classes (Bdelloidea, Monogononta, and Seisonidea). We do so using small-subunit (SSU) and large-subunit (LSU) ribosomal DNA and cytochrome c oxidase subunit 1 (cox 1) sequences. These nuclear and mitochondrial DNA sequences were obtained for 27 acanthocephalans, 9 rotifers, and representatives of 6 phyla that were used as outgroups. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses were conducted on the nuclear rDNA(SSU+LSU) and the combined sequence dataset(SSU+LSU+cox 1 genes). Phylogenetic analyses of the combined rDNA and cox 1 data uniformly provided strong support for a clade including rotifers plus acanthocephalans (Syndermata). Strong support was also found for monophyly of Acanthocephala in analyses of the combined dataset or rDNA sequences alone. Within the Acanthocephala the monophyletic grouping of the representatives of each class was strongly supported. Our results depicted Archiacanthocephala as the sister-group to the remaining acanthocephalans. Analyses of the combined dataset recovered a sister-group relationship between Acanthocephala and Bdelloidea by parsimony, likelihood, and Bayesian methods. Support for this clade was generally strong. Alternative topologies that depicted a different rotifer sister-group of Acanthocephala (or monophyly of Rotifera) were significantly worse. In this paraphyletic assemblage of rotifers, the relative positions of Seisonidea and Monogononta to the clade Bdelloidea+Acanthocephala were inconsistent among trees based on different inference methods. These results indicate that Bdelloidea is the free-living sister-group to acanthocephalans, which should prove key for comparative investigations of the morphological, molecular, and ecological changes accompanying the evolution of parasitism.  相似文献   

14.
Determining the root of the anuran Tree of Life is still a contentious and open question in frog systematics. Two genera with disjunct distributions have been traditionally considered the most basal among extant frogs: Leiopelma, which is endemic to New Zealand, and Ascaphus, which lives in North America. However, their specific phylogenetic position is rather elusive because each genus shows many autapomorphies, and together they retain many symplesiomorphic characters. Therefore, several alternative hypotheses have been proposed regarding the relative phylogenetic position of both Leiopelma and Ascaphus. In order to distinguish among these competing phylogenetic hypotheses, we sequenced the complete mitochondrial (mt) genome of Leiopelma archeyi and used it along with previously reported frog mt genomes (including that of Ascaphus truei) to infer a robust phylogeny of major anuran lineages. The reconstructed maximum likelihood and Bayesian inference phylogenies recovered identical topology, which supports the sister group relationship of Ascaphus and Leiopelma, and the placement of this clade at the base of the anuran tree. Interestingly, the mt genome of L. archeyi displays a novel gene arrangement in frog mt genomes affecting the relative position of cytochrome b, trnT, NADH dehydrogenase subunit 6, trnE, and trnP genes. The tandem duplication-random loss model of gene order change explains the origin of this novel frog mt genome arrangement, which is convergent with others reported in some fishes and salamanders. These results, together with comparative data for other available vertebrate mt genomes, provide evidence that the 5' end of the control region is a hot spot for gene order rearrangement.  相似文献   

15.
Funneliformis mosseae is among the most ecologically and economically important glomeromycete species and occurs both in natural and disturbed areas in a wide range of habitats and climates. In this study, we report the sequencing of the complete mitochondrial (mt) genome of F. mosseae isolate FL299 using 454 pyrosequencing and Illumina HiSeq technologies. This mt genome is a full-length circular chromosome of 134,925 bp, placing it among the largest mitochondrial DNAs (mtDNAs) in the fungal kingdom. A comparative analysis with publically available arbuscular mycorrhizal fungal mtDNAs revealed that the mtDNA of F. mosseae FL299 contained a very large number of insertions contributing to its expansion. The gene synteny was completely reshuffled compared to previously published glomeromycotan mtDNAs and several genes were oriented in an anti-sense direction. Furthermore, the presence of different types of introns and insertions in rnl (14 introns) made this gene very distinctive in Glomeromycota. The presence of alternative genetic codes in both initiation (GUG) and termination (UGA) codons was another new feature in this mtDNA compared to previously published glomeromycotan mt genomes. The phylogenetic analysis inferred from the analysis of 14 protein mt genes confirmed the position of the Glomeromycota clade as a sister group of Mortierellomycotina. This mt genome is the largest observed so far in Glomeromycota and the first mt genome within the Funneliformis clade, providing new opportunities to better understand their evolution and to develop molecular markers.  相似文献   

16.
The past decade has seen the application of DNA sequence data to phylogenetic investigations of Rotifera, both expanding and challenging our understanding of the evolution of the phylum. Evidence that Acanthocephala, long regarded as a separate but closely related phylum, is a highly derived class of Rotifera demonstrates the potential of molecular analyses to suggest relationships not obvious from morphological analysis. Phylogenies based on the sequence of the gene for the small ribosomal RNA suggest that rotifers and acanthocephalans are associated with Platyhelminthes and Gastrotricha, perhaps in a clade with Gnathostomula and Cycliophora; at present, this group lacks a clear morphological synapomorphy. A more complete resolution of the molecular phylogeny of Rotifera will require surveying multiple genes and several species from each clade under investigation.  相似文献   

17.
[目的]动物典型的单一染色体线粒体基因组在甲胁虱属Hoplopleura已裂化成多个线粒体微环染色体.本研究旨在通过测定太平洋甲胁虱Hoplopleura pacifica的线粒体基因组来推测甲胁虱属祖先线粒体核型.[方法]利用Illumina HiSeq X Ten高通量测序技术对太平洋甲胁虱裂化线粒体基因组进行测定...  相似文献   

18.
The complete nucleotide sequences of the mitochondrial (mt) genomes of the entoprocts Loxocorone allax and Loxosomella aloxiata were determined. Both species carry the typical gene set of metazoan mt genomes and have similar organizations of their mt genes. However, they show differences in the positions of two tRNA(Leu) genes. Additionally, the tRNA(Val) gene, and half of the long non-coding region, is duplicated and inverted in the Loxos. aloxiata mt genome. The initiation codon of the Loxos. aloxiata cytochrome oxidase subunit I gene is expected to be ACG rather than AUG. The mt gene organizations in these two entoproct species most closely resemble those of mollusks such as Katharina tunicata and Octopus vulgaris, which have the most evolutionarily conserved mt gene organization reported to date in mollusks. Analyses of the mt gene organization in the lophotrochozoan phyla (Annelida, Brachiopoda, Echiura, Entoprocta, Mollusca, Nemertea, and Phoronida) suggested a close phylogenetic relationship between Brachiopoda, Annelida, and Echiura. However, Phoronida was excluded from this grouping. Molecular phylogenetic analyses based on the sequences of mt protein-coding genes suggested a possible close relationship between Entoprocta and Phoronida, and a close relationship among Brachiopoda, Annelida, and Echiura.  相似文献   

19.
GH Liu  SY Wang  WY Huang  GH Zhao  SJ Wei  HQ Song  MJ Xu  RQ Lin  DH Zhou  XQ Zhu 《PloS one》2012,7(7):e42172
Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp..  相似文献   

20.
In the holometabolous insect order Neuroptera (lacewings), the cosmopolitan Myrmeleontidae (antlions) are the most species-rich family, while the closely related Nymphidae (split-footed lacewings) are a small endemic family from the Australian-Malesian region. Both families belong to the suborder Myrmeleontiformia, within which controversial hypotheses on the interfamilial phylogenetic relationships exist. Herein, we describe the complete mitochondrial (mt) genomes of an antlion (Myrmeleon immanis Walker, 1853) and a split-footed lacewing (Nymphes myrmeleonoides Leach, 1814), representing the first mt genomes for both families. These mt genomes are relatively small (respectively composed of 15,799 and 15,713 bp) compared to other lacewing mt genomes, and comprise 37 genes (13 protein coding genes, 22 tRNA genes and two rRNA genes). The arrangement of these two mt genomes is the same as in most derived Neuroptera mt genomes previously sequenced, specifically with a translocation of trnC. The start codons of all PCGs are started by ATN, with an exception of cox1, which is ACG in the M. immanis mt genome and TCG in N. myrmeleonoides. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN). The secondary structures of rrnL and rrnS are similar with those proposed insects and the domain I contains nine helices rather than eight helices, which is common within Neuroptera. A phylogenetic analysis based on the mt genomic data for all Neuropterida sequenced thus far, supports the monophyly of Myrmeleontiformia and the sister relationship between Ascalaphidae and Myrmeleontidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号