首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first report of Sordaria fimicola-like ascomycete which was encountered during a diversity study of injured tissues of coulter pine in Slovakia. The fungus was identified as Sordaria fimicola by morphological analyses. Sequence analysis of internal transcribed spacer region (ITS) showed that the fungus is highly related to the ITS sequences of several S. fimicola isolates documenting wide ecological valence and geographical distribution of S. fimicola-like ascomycetes.  相似文献   

2.
Exploring life cycles of fungi is insightful for understanding their basic biology and can highlight their ecology. Here, we dissected the sexual and asexual life cycles of the obligate alkalophilic ascomycete Sodiomyces alkalinus that thrives at extremely high pH of soda lakes. S. alkalinus develops acremonium-type asexual sporulation, commonly found in ascomycetous fungi. However, the sexual stage was unusual, featuring very early lysis of asci which release young ascospores inside a fruit body long before its maturation. In a young fruit body, a slimy matrix which originates from the combined epiplasm of asci and united cytoplasm of the pseudoparenchymal cells, surrounds pooled maturing ascospores. Upon maturity, the ascospores are forcibly released through a crack in the fruit body, presumably due to an increased turgor pressure. These features of the sexual stage development resemble the ones found in unrelated marine fungi, indicating convergent evolution of the trait. We hypothesise these developmental features of S. alkalinus to be adaptive in the conditions of periodically inundated rims of soda lakes where the fungus thrives.  相似文献   

3.
Since 2010, an unknown fungus in the Gnomoniaceae has been found on overwintered leaves and petioles of Styrax obassia (Styracaceae) in Japan. This fungus is characterized by dark brown immersed or partially erumpent ascomata with long necks and fusiform to obovoid asci each with an acute or long tapering stipe. Each ascus bears eight fusiform to filiform ascospores. Our morphological observation and phylogenetic analyses based on the markers LSU, rpb2, and tef-1α indicated that this is a new monotypic genus in the Gnomoniaceae (Diaporthales), and Tenuignomonia styracis gen. et sp. nov. was descried herein. Members of the Gnomoniaceae are commonly isolated as endophytes, saprobes, and plant pathogens from a broad diversity of herbaceous, shade tree, and agriculturally significant plants. We thus carried out a pathogenicity test to determine if T. styracis is the causative agent of leaf blotch on S. obassia. One week after inoculation, this fungus produced small necrotic spots on the leaves and petioles, and all leaves having necrotic spots were abscised in a short time. We thus confirmed that this fungus has weak pathogenicity on S. obassia. This new species may promote early defoliation of S. obassia during the fall.  相似文献   

4.
The habitat-adapted symbiosis hypothesis predicts that the most positive effects of symbiosis are expected in the most stressful sites for a plant host. Stress varies with site characteristics but also during the life cycle of a plant, with winter annuals experiencing the most stress after fall emergence. For Bromus tectorum, fecundity can vary tremendously from a few to thousands of seeds per plant. We used endophytic Sordaria fimicola to test the hypothesis in three sites in western Montana. We hypothesized that the effects of S. fimicola inoculation would be most positive in the most stressful site after fall application. As predicted, the most positive effects on growth and fecundity were observed in the most stressful site after fall application of S. fimicola. However, the effects of treatments varied within and between sites considerably, and are best understood as an example of context-dependency in plant-microbe interactions rather than habitat-adapted symbiosis.  相似文献   

5.
Insects, especially those feeding on leaf litter, widely form symbiosis with fungi. As dead plant tissues provide insects with poor-quality diets, which contain relatively high levels of indigestible lignin and cellulose, some saprophytic fungi may increase nutrient availability by polysaccharide degradation. Although the inherited, obligate bacterial symbionts are well documented, the non-inherited, facultative fungal symbionts are relatively overlooked. Females of the leaf-rolling weevil Heterapoderopsis bicallosicollis, a specialist of Triadica sebifera, construct leaf-rolls that serve as retreats from which larvae feed internally. We found that fungi associated with leaf-rolls were not transported by the female, but likely originated from the soil. To determine the effects of fungi on H. bicallosicollis development, fungal growth was reduced by a dry treatment. This treatment decreased adult weight and survival, and prolonged larval duration significantly. We further tested the hypothesis that fungi degrade leaf-roll polysaccharides, by a fungus inoculation experiment. Three dominant fungi (Penicillium sp., Aspergillus sp. and Cladosporium sp.) decreased the levels of soluble carbohydrate, cellulose, and lignin in inoculation experiments. Soluble carbohydrate, cellulose, and lignin of leaf-rolls all were found to decrease gradually during insect development. We conclude that these saprophytic fungi form facultative associations with H. bicallosicollis and benefit weevil nutrition by polysaccharide decomposition. Our study highlights the significance of fungal symbionts in insect nutritional ecology.  相似文献   

6.
Truffle (Tuber spp.) cultivation is based on raising mycorrhizal trees in greenhouses that have been inoculated with suspensions of ascospores. The problem with this is that pests, pathogens, and other mycorrhizal fungi can contaminate the trees. Furthermore, because ascospores are produced sexually, each plant potentially has a different genetic mycorrhizal makeup from each other so tailoring the mycorrhizal component of plants to suit a particular set of soil and climatic conditions is out of the question. Here, we report on the production of Tuber borchii-mycorrhized plants using pure cultures, establishing a truffière with these and subsequent production of its fruiting bodies. This study opens up the possibility of producing commercial numbers of Tuber-mycorrhized trees for truffle cultivation using mycelial inoculation techniques. It also poses questions about the mechanism of fertilization between the different strains which were located in different parts of the experimental truffière.  相似文献   

7.
Criconemella xenoplax, Fusarium solani, and F. oxysporum caused necrosis of Nemaguard peach feeder roots in greenhouse tests. Root necrosis was more extensive in the presence of either fungus than wtih C. xenoplax alone. Shoot growth and plant height were less for plants inoculated with F. oxysporum or F. solani than for plants inoculated with the fungi plus C. xenoplax. Neither synergistic nor additive effects on root necrosis or plant growth occurred between C. xenoplax and the fungal pathogens.  相似文献   

8.
The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect–microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient‐poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle–fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle–fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine‐scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non‐natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non‐natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non‐natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle–fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.  相似文献   

9.
Two PCR primer pairs specific for Helminthosporium solani, which causes silver scurf on potato tubers, were designed from nucleotide sequences of the nuclear ribosomal internal transcribed spacer regions of H. solani. Both primer pairs amplified a single product with DNA from 48 North American and European isolates of H. solani, but not with DNA from 42 other fungi. Primers also amplified a single product with DNA extracted from silver scurf lesions on potato tubers and other plant tissue inoculated with spores of H. solani. Detection of the fungus in infested soil was only possible with nested PCR and after processing soil with a bead beater. Specific amplification of H. solani DNA can be used to study the saprophytic and pathogenic activity of this fungus in soil and plant tissue.  相似文献   

10.
Ipomoea asarifolia and Turbina corymbosa (Convolvulaceae) are associated with epibiotic clavicipitalean fungi responsible for the presence of ergoline alkaloids in these plants. Experimentally generated plants devoid of these fungi were inoculated with different epibiotic and endophytic fungi resulting in a necrotic or commensal situation. A symbiotum of host plant and its respective fungus was best established by integration of the fungus into the morphological differentiation of the host plant. This led us to suppose that secretory glands on the leaf surface of the host plant may play an essential role in ergoline alkaloid biosynthesis which takes place in the epibiotic fungus.Key words: ergoline alkaloids, ipomoea, turbina, convolvulaceae, claviceps, balansia, clavicipitaceae, penicillium, plant-fungus symbiotum  相似文献   

11.
Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.  相似文献   

12.
In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism–parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism).  相似文献   

13.
Ectomycorrhizal fungi (ECMF) play an important role in forest ecosystems, often mitigating stress factors and increasing seedling performance. The aim of this study was to investigate the effects of a nursery inoculation on Pinus pinaster growth and on the fungal communities established when reforesting burned areas. Inoculated P. pinaster saplings showed 1.5-fold higher stem height than the non-inoculated controls after a 5 year growth period, suggesting that fungal inoculation could potentiate tree growth in the field. Ordination analysis revealed the presence of different ECMF communities on both plots. Among the nursery-inoculated fungi, Laccaria sp., Rhizopogon sp., Suillus bovinus and Pisolithus sp. were detected on inoculated Pinus saplings on both sampling periods, indicating that they persisted after field establishment. Other fungi were also detected in the inoculated plants. Phialocephala sp. was found on the first assessment, while Terfezia sp. was detected on both sampling periods. Laccaria sp. and Rhizopogon sp. were identified in the control saplings, belonging however to different species than those found in the inoculated plot. Inocybe sp., Thelephora sp. and Paxillus involutus were present on both sampling periods in the non-inoculated plots. The results suggest that ECMF inoculation at nursery stage can benefit plant growth after transplantation to a post-fire site and that the inoculated fungi can persist in the field. This approach has great potential as a biotechnological tool to aid in the reforestation of burned areas.  相似文献   

14.
The invasive annual grass Bromus tectorum (cheatgrass) forms a positive feedback with fire in some areas of western North America’s sagebrush biome by increasing fire frequency and size, which then increases B. tectorum abundance post-fire and dramatically alters ecosystem structure and processes. However, this positive response to fire is not consistent across the sagebrush steppe. Here, we ask whether different climate conditions across the sagebrush biome can explain B. tectorums variable response to fire. We found that climate variables differed significantly between 18 sites where B. tectorum does and does not respond positively to fire. A positive response was most likely in areas with higher annual temperatures and lower summer precipitation. We then chose a climatically intermediate site, with intact sagebrush vegetation, to evaluate whether a positive feedback had formed between B. tectorum and fire. A chronosequence of recent fires (1–15 years) at the site created a natural replicated experiment to assess abundance of B. tectorum and native plants. B. tectorum cover did not differ between burned and unburned plots but native grass cover was higher in recently burned plots. Therefore, we found no evidence for a positive feedback between B. tectorum and fire at the study site. Our results suggest that formation of a positive B. tectorum-fire feedback depends on climate; however, other drivers such as disturbance and native plant cover are likely to further influence local responses of B. tectorum. The dependence of B. tectorum’s response to fire on climate suggests that climate change may expand B. tectorums role as a transformative invasive species within the sagebrush biome.  相似文献   

15.
To test the effect of seed treatment with fungicides on the development of mycorrhizal fungi, bean seeds were treated with fungicide dry or vehicled in the organic solvents, ethanol or dichloromethane and then planted in soil inoculated with the mycorrhizal fungus Glomus macrocarpum and/or the plant pathogenic fungus Fusarium solani. Measurements were made at 4 day intervals, to evaluate the location and extent of colonization of either Glomus macrocarpum or Fusarium solani in the root system. Most combinations of fungicide-solvent had little effect on the extent of colonization by each fungus individually. However, when both fungi were inoculated together, symptoms of F. solani were seen only in the tips of roots which indicate that the mycorrhizal fungus was able to limit the occurrence of the pathogenic fungus.  相似文献   

16.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

17.
Two xylariaceous fungi were isolated from a nest of a termite, Odontotermes formosanus, that was incubated in a laboratory after collecting from Iriomote Is., Okinawa Pref., in Japan. One of the two fungi was identified as Xylaria angulosa on the basis of the morphology of branched stroma produced on medium, tiny asci, and ascospores having a germ slit. Another fungus is an anamorphic fungus that produces synnemata up to 50 mm long from which dendritic conidiophores branch out. Unicellular conidia are holoblastically produced on a sympodially proliferating conidiogenous cell. Such morphological characters resemble those of the genus Geniculosporium. However, its distinctive synnema formation and dendritic conidiophores do not assign the fungus to Geniculosporium or other known genera and warrant establishment of a new genus. The phylogenetic tree based on the ITS regions of rDNA shows that the fungus is nested in the cluster of the genus Nemania (Xylariaceae), whose species have mainly Geniculosporium-like anamorphs. We describe here the present anamorphic fungus as Geniculisynnema termiticola gen. et sp. nov., and discuss its phylogenetic and ecological relationships to xylariaceous fungi, especially termiticolous species.  相似文献   

18.
This study aims to investigate the effects of inoculation using Terfezia boudieri Chatin ascospores (ectomycorrhizal fungus) on growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. seedlings grown in pots on two-soil types (gypseous and sandy loam). Mycorrhizal seedlings had significantly increased their height and leaf number compared to non-mycorrhizal ones. Regardless of mycorrhizal inoculation treatments, the plants growing on gypseous soil showed higher growth as compared to sandy loam one. It appears that inoculation with T. boudieri changed root morphology, increasing branching of first-order lateral roots of H. sessiliflorum seedlings. The highest root mycorrhizal colonization was recorded in inoculated seedlings on sandy loam soil (89%) when compared to gypseous one (52%). N, P and K concentrations in mycorrhizal seedlings were significantly improved by fungal inoculation. It can be concluded that inoculation of H. sessiliflorum with T. boudieri increased growth attributes and improved plant nutritional status.  相似文献   

19.
The application of ectomycorrhizal (ECM) fungi on forest nursery production is regarded as part of good management practice. However, before employing large scale inoculations in a nursery the interaction between ECM symbionts, growth substrate and fertilisation input should be studied to select the most suitable nursery practices for promoting plant growth and ECM colonisation. In this study, seedlings of Quercus ilex were inoculated with Paxillus involutus, Hebeloma mesophaeum or Cenococcum geophilum and grown in three different substrates commonly used in forest nurseries: peat-based compost, forest soil or composted pine bark. The effect of various fertilisation regimes was also studied. The choice of substrate had a significant effect on plant growth and ECM colonisation. The most appropriate combination of substrate and ECM fungus for Q. ilex growth and nutrition was peat and H. mesophaeum. Plants grown on a peat-based compost and inoculated with H. mesophaeum had a significantly greater biomass and leaf phosphorus concentration without fertilisation. Composted pine bark was found not to be suitable for growth or for mycorrhization. If the appropriate growth substrate is selected, it is possible to replace the use of chemical fertilisers by inoculation with selected ECM fungi. This results in a significant increase in plant development, and thus ECM fungi can be recommended as a more environmental friendly biotechnological approach to plant management in the nursery.  相似文献   

20.
Little is known on the resistance of wheat cultivars to Sitobion avenae (F.) in Brazil. The goal of this work was to assess the behavior and biology of S. avenae on four commercial wheat cultivars to verify the existence of resistance by antibiosis in leaves and ears and non-preference in the ears. The smallest net fecundity rates of S. avenae in wheat leaves have been found in the cultivars Embrapa 22 and BRS264, which did not differ between themselves. The intrinsic rate of increase of S. avenae was smaller in leaves of Embrapa 22 than in cultivars BRS254 and BRS Timbaúva. The smallest net fecundity rates of S. avenae in wheat ears were observed in the cultivars BRS254 and Embrapa 22. The intrinsic rate of increase of the aphid in the ear of cultivar Embrapa 22 was smaller than in BRS Timbaúva and BRS264, but did not differ from BRS254. The organ of the wheat plant in which the aphid was reared influences antibiosis resistance, but the cultivar BRS Timbaúva was considered susceptible and Embrapa 22 resistant to S. avenae in both plant organs tested. Ears of wheat cultivars tested did not show differences in the mechanism of resistance by non-preference to S. avenae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号