首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cancer and inflammation are strongly interconnected processes. Chronic inflammatory pathologies can be at the heart of tumor development; similarly, tumor-elicited inflammation is a consequence of many cancers. The mechanistic interdependence between cancer and inflammatory pathologies points toward common protein effectors which represent potential shared targets for pharmacological intervention. Epigenetic mechanisms often drive resistance to cancer therapy and immunomodulatory strategies. The bromodomain and extraterminal domain (BET) proteins are epigenetic adapters which play a major role in controlling cell proliferation and the production of inflammatory mediators. A plethora of small molecules aimed at inhibiting BET protein function to treat cancer and inflammatory diseases have populated academic and industry efforts in the last 10 years. In this review, we will discuss recent pharmacological approaches aimed at targeting a single or a subset of the eight bromodomains within the BET family which have the potential to tease apart clinical efficacy and safety signals of BET inhibitors.  相似文献   

3.
Bromodomains(BRDs)是一类能够特异性识别乙酰化赖氨酸残基的保守蛋白结构域,存在于染色质及与转录相关的蛋白 中,其功能包括染色质重塑和转录调控,并在细胞内由乙酰化介导的蛋白-蛋白相互作用中发挥极为重要的作用,是多种疾病(包括癌 症、炎症和自身免疫病)的表观遗传医学靶点。介绍BRDs 的生物学功能、结构及分类,主要从BET bromodomain 抑制剂和非BET bromodomain 抑制剂两个方面对BRDs 抑制剂的研究进展作一综述,为高活性和选择性的BRDs 抑制剂研发提供参考。  相似文献   

4.
5.
While many contraception options are available for women, birth control methods for men are limited to condoms and vasectomy. Past research into male contraceptives has focused on hormonal options but the associated side effects have thus far precluded this method from reaching the market. Non-hormonal male contraceptives and vas occlusion have also been explored, but to date no method has progressed past clinical testing. Recent interest in epigenetic research has unveiled a new potential non-hormonal male contraceptive target: the testis-specific bromodomain BRDT. Potent inhibitors for bromodomain-containing proteins are described in the literature, but a BRDT-specific compound has yet to be designed, prepared and tested. The high similarity between bromodomain proteins of the BET family makes development of selective and specific inhibitors both difficult and necessary. Selective inhibition of BRDT by a small molecule is an exciting new target in the search for a new non-hormonal male contraceptive.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The bromodomain and extraterminal (BET) family of proteins play a crucial role in promoting gene expression of critical oncogenes. Novel BET bromodomain inhibitors with excellent potency, drug metabolism and pharmacokinetics (DMPK) properties were in strong need for development. We reported a series of potential BET inhibitors through incorporation of imidazole into pyridine scaffold. Among them, a novel BET inhibitor with 7-methylimidazo[1,5-a]pyrazin-8(7H)-one core, compound 28, was considered to be the most promising for in-depth study. Compound 28 exhibited excellent BRD4-inhibitory activity with IC50 value of 33 nM and anti-proliferation potency with IC50 value of 110 nM in HL-60 (human promyelocytic leukemia) cancer cell lines. Western Blot indicated that compound 28 can effectively trigger apoptosis in BxPc3 cells by modulating the intrinsic apoptotic pathway. In conclusion, these results suggested that compound 28 has merely potential for leukemia treatment.  相似文献   

18.
MS‐based analysis of the acetylproteome has highlighted a role for acetylation in a wide array of biological processes including gene regulation, metabolism, and cellular signaling. To date, anti‐acetyllysine antibodies have been used as the predominant affinity reagent for enrichment of acetyllysine‐containing peptides and proteins; however, these reagents suffer from high nonspecific binding and lot‐to‐lot variability. Bromodomains represent potential affinity reagents for acetylated proteins and peptides, given their natural role in recognition of acetylated sequence motifs in vivo. To evaluate their efficacy, we generated recombinant proteins representing all known yeast bromodomains. Bromodomain specificity for acetylated peptides was determined using degenerate peptide arrays, leading to the observation that different bromodomains display a wide array of binding specificities. Despite their relatively weak affinity, we demonstrate the ability of selected bromodomains to enrich acetylated peptides from a complex biological mixture prior to mass spectrometric analysis. Finally, we demonstrate a method for improving the utility of bromodomain enrichment for MS through engineering novel affinity reagents using combinatorial tandem bromodomain pairs.  相似文献   

19.
20.
Pluripotent stem cells (PSCs) hold great clinical potential, as they possess the capacity to differentiate into fully specialised tissues such as pancreas, liver, neurons and cardiac muscle. However, the molecular mechanisms that coordinate pluripotent exit with lineage specification remain poorly understood. To address this question, we perform a small molecule screen to systematically identify novel regulators of the Smad2 signalling network, a key determinant of PSC fate. We reveal an essential function for BET family bromodomain proteins in Smad2 activation, distinct from the role of Brd4 in pluripotency maintenance. Mechanistically, BET proteins specifically engage Nodal gene regulatory elements (NREs) to promote Nodal signalling and Smad2 developmental responses. In pluripotent cells, Brd2‐Brd4 occupy NREs, but only Brd4 is required for pluripotency gene expression. Brd4 downregulation facilitates pluripotent exit and drives enhanced Brd2 NRE occupancy, thereby unveiling a specific function for Brd2 in differentiative Nodal‐Smad2 signalling. Therefore, distinct BET functionalities and Brd4‐Brd2 isoform switching at NREs coordinate pluripotent exit with lineage specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号