首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of the enhanced permeability and retention (EPR) effect has resulted in the development of nanomedicines, including liposome-based formulations of drugs, as cancer therapies. The use of liposomes has resulted in substantial increases in accumulation of drugs in solid tumors; yet, significant improvements in therapeutic efficacy have yet to be achieved. Imaging of the tumor accumulation of liposomes has revealed that this poor or variable performance is in part due to heterogeneous inter-subject and intra-tumoral liposome accumulation, which occurs as a result of an abnormal transport microenvironment. A mathematical model that relates liposome accumulation to the underlying transport properties in solid tumors could provide insight into inter and intra-tumoral variations in the EPR effect. In this paper, we present a theoretical framework to describe liposome transport in solid tumors. The mathematical model is based on biophysical transport equations that describe pressure driven fluid flow across blood vessels and through the tumor interstitium. The model was validated by direct comparison with computed tomography measurements of tumor accumulation of liposomes in three preclinical tumor models. The mathematical model was fit to liposome accumulation curves producing predictions of transport parameters that reflect the tumor microenvironment. Notably, all fits had a high coefficient of determination and predictions of interstitial fluid pressure agreed with previously published independent measurements made in the same tumor type. Furthermore, it was demonstrated that the model attributed inter-subject heterogeneity in liposome accumulation to variations in peak interstitial fluid pressure. These findings highlight the relationship between transvascular and interstitial flow dynamics and variations in the EPR effect. In conclusion, we have presented a theoretical framework that predicts inter-subject and intra-tumoral variations in the EPR effect based on fundamental properties of the tumor microenvironment and forms the basis for transport modeling of liposome drug delivery.  相似文献   

2.
Nanoparticle drug formulations have been extensively researched and developed in the field of drug delivery as a means to efficiently deliver insoluble drugs to tumor cells. By mechanisms of the enhanced permeability and retention effect, nanoparticle drug formulations are capable of greatly enhancing the safety, pharmacokinetic profiles and bioavailability of the administered treatment. Here, the progress of various nanoparticle formulations in both research and clinical applications is detailed with a focus on the development of drug/gene delivery systems. Specifically, the unique advantages and disadvantages of polymeric nanoparticles, liposomes, solid lipid nanoparticles, nanocrystals and lipid-coated nanoparticles for targeted drug delivery will be investigated in detail.  相似文献   

3.
Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that “prime” solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.KEY WORDS: controlled release, drug combination, drug delivery, drug solubilization, polymeric micelles  相似文献   

4.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   

5.
Polymer conjugates: nanosized medicines for treating cancer   总被引:1,自引:0,他引:1  
Interdisciplinary research at the interface of polymer chemistry and the biomedical sciences has produced the first polymer-based nanomedicines for the diagnosis and treatment of cancer. These water-soluble hybrid constructs, designed for intravenous administration, fall into two main categories: polymer-protein conjugates or polymer-drug conjugates. Polymer conjugation to proteins reduces immunogenicity, prolongs plasma half-life and enhances protein stability. Polymer-drug conjugation promotes tumor targeting through the enhanced permeability and retention (EPR) effect and, at the cellular level following endocytic capture, allows lysosomotropic drug delivery. The successful clinical application of polymer-protein conjugates (PEGylated enzymes and cytokines) and promising results arising from clinical trials with polymer-bound chemotherapy (e.g. doxorubicin, paclitaxel, camptothecins) has provided a firm foundation for more sophisticated second-generation constructs that deliver the newly emerging target-directed anticancer agents (e.g. modulators of the cell cycle, signal transduction inhibitors and antiangiogenic drugs) in addition to polymer-drug combinations (e.g. endocrine- and chemo-therapy).  相似文献   

6.
Codelivery of multiple therapeutic agents with different anticancer mechanisms can overcome drug resistance as well as generate additive or synergistic anticancer effects that may enhance the antitumor efficacy. Antibody-drug conjugates (ADCs) can be used for highly specific delivery of multiple therapeutic agents with different anticancer mechanisms, though more research is required towards designing flexible platforms on which dual drug ADCs could be prepared. Herein, we describe the synthesis of a heterotrifunctional linker that could be used to construct flexible platforms for preparing dual-cytotoxic drug conjugates in a site-specific manner. As a proof of concept, we synthesized dual drug ADCs carrying monomethyl auristain E (MMAE, tubulin polymerization inhibitor) and pyrrolobenzodiazepine dimer (PBD, DNA minor groove alkylator). We then evaluated the dual drug ADCs for in vitro efficacy and confirmed the dual mechanism of action.  相似文献   

7.
Combination therapy has emerged as one of the most promising approaches for cancer treatment. However, beyond remotely-triggered therapies that require advanced infrastructures and optimization, new combination therapies based on internally triggered cell-killing effects have also demonstrated promising therapeutic profiles. In this revision, the focus is on self-triggered strategies able to improve the therapeutic effect of drug delivery nanosystems. As reviewed, ferroptosis, hypoxia, and immunotherapy show potency enough to treat satisfactorily tumors in vivo. However, the interest of combining those with chemotherapeutics, especially with carriers based on mesoporous silica, has provided a new generation of therapeutic nanomedicines with potential enough to achieve complete tumor remission in murine models.  相似文献   

8.
Minimally invasive image-guided tumor ablation using short duration heating via needle-like applicators using energies such as radiofrequency or microwave has seen increasing clinical use to treat focal liver, renal, breast, bone, and lung tumors. Potential benefits of this thermal therapy include reduced morbidity and mortality compared to standard surgical resection and ability to treat non-surgical patients. However, improvements to this technique are required as achieving complete ablation in many cases can be challenging particularly at margins of tumors>3 cm in diameter and adjacent to blood vessels. Thus, one very promising strategy has been to combine thermal tumor ablation with adjuvant nanoparticle-based chemotherapy agents to improve efficiency. Here, we will primarily review principles of thermal ablation to provide a framework for understanding the mechanisms of combination therapy, and review the studies on combination therapy, including presenting preliminary data on the role of such variables as nanoparticle size and thermal dose on improving combination therapy outcome. We will discuss how thermal ablation can also be used to improve overall intratumoral drug accumulation and nanoparticle content release. Finally, in this article we will further describe the appealing off-shoot approach of utilizing thermal ablation techniques not as the primary treatment, but rather, as a means to improve efficiency of intratumoral nanoparticle drug delivery.  相似文献   

9.
Modern polymer chemistry has led to the generation of a number of biocompatible synthetic polymers that have been increasingly studied as efficient carriers for drugs and imaging agents. Synthetic biocompatible polymers have been used to improve the efficacy of both small-molecular-weight therapeutics and imaging agents. Furthermore, multiple targeted anticancer agents and/or imaging reporters can be attached to a single polymer chain, allowing multifunctional and/or multimodality therapy and molecular imaging. Having both an anticancer drug and an imaging reporter in a single polymer chain allows noninvasive real-time visualization of the pharmacokinetics of polymeric drug delivery systems, which can uncover and explain the complicated mechanisms of in vivo drug delivery and their correlation to pharmacodynamics. This review examines the use of the synthetic biocompatible polymer poly(L-glutamic acid) (PG) as an efficient carrier of cancer therapeutics and imaging agents. This review summarizes and updates our recent research on the use of PG as a platform for drug delivery and molecular imaging, including recent clinical findings with respect to PG-paclitaxel (PG-TXL), the combination of PG-TXL with radiotherapy, mechanisms of action of PG-TXL, and noninvasive visualization of in vivo delivery of polymeric conjugates with contrast-enhanced magnetic resonance imaging, optical imaging, and multimodality imaging.  相似文献   

10.
Although conventional cancer therapies such as chemotherapy and radiotherapy prevail in clinic, they tend to have narrow therapeutic windows. Many chemotherapies have unfavorable pharmacokinetics while radiotherapy incurs radiotoxicity to normal tissues surrounding tumors. The chemical tunability of supramolecular metal-based nanoparticles (SMNPs) enables the incorporation of various therapeutics, including hydrophilic and hydrophobic chemotherapeutic drugs, photosensitizers, radiosensitizers, and biological therapeutics for more effective delivery to tumors. In this mini-review, we highlight recent advances in SMNPs, namely nanoscale coordination polymers and nanoscale metal–organic frameworks, for drug delivery and cancer therapy. We particularly focus on innovative uses of metal clusters, ligands, pores, and surface modifications to load various therapeutics into SMNPs and critical evaluations of the anticancer efficacies of SMNPs.  相似文献   

11.
Macromolecules have been developed as carriers of low-molecular-weight drugs in drug delivery systems (DDS) to improve their pharmacokinetic profile or to promote their uptake in tumor tissue via enhanced permeability and retention (EPR) effects. In the present study, recombinant human serum albumin dimer (AL-Dimer), which was designed by linking two human serum albumin (HSA) molecules with the amino acid linker (GGGGS)(2), significantly accumulated in tumor tissue even more than HSA Monomer (AL-Monomer) and appearing to have good retention in circulating blood in murine colon 26 (C26) tumor-bearing mice. Moreover, we developed S-nitrosated AL-Dimer (SNO-AL-Dimer) as a novel DDS compound containing AL-Dimer as a carrier, and nitric oxide (NO) as (i) an anticancer therapeutic drug/cell death inducer and (ii) an enhancer of the EPR effect. We observed that SNO-AL-Dimer treatment induced apoptosis of C26 tumor cells in vitro, depending on the concentration of NO. In in vivo experiments, SNO-AL-Dimer was found to specifically deliver large amounts of cytotoxic NO into tumor tissue but not into normal organs in C26 tumor-bearing mice as compared with control (untreated tumor-bearing mice) and SNO-AL-Monomer-treated mice. Intriguingly, S-nitrosation improved the uptake of AL-Dimer in tumor tissue through augmenting the EPR effect. These data suggest that SNO-AL-Dimer behaves not only as an anticancer therapeutic drug, but also as a potentiator of the EPR effect. Therefore, SNO-AL-Dimer would be a very appealing carrier for utilization of the EPR effect in future development of cancer therapeutics.  相似文献   

12.
During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug.  相似文献   

13.
《New biotechnology》2015,32(6):665-672
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles.  相似文献   

14.
Nanoparticle carriers are attractive vehicles for a variety of drug delivery applications. In order to evaluate nanoparticle formulations for biological efficacy, monolayer cell cultures are typically used as in vitro testing platforms. However, these studies sometimes poorly predict the efficacy of the drug in vivo. The poor in vitro and in vivo correlation may be attributed in part to the inability of two-dimensional cultures to reproduce extracellular barriers, and may also be due to differences in cell phenotype between cells cultured as monolayers and cells in native tissue. In order to more accurately predict in vivo results, it is desirable to test nanoparticle therapeutics in cells cultured in three-dimensional (3-D) models that mimic in vivo conditions. In this review, we discuss some 3-D culture systems that have been used to assess nanoparticle delivery and highlight several implications for nanoparticle design garnered from studies using these systems. While our focus will be on nanoparticle drug formulations, many of the systems discussed here could, or have been, used for the assessment of small molecule or peptide/protein drugs. We also offer some examples of advancements in 3-D culture that could provide even more highly predictive data for designing nanoparticle therapeutics for in vivo applications.  相似文献   

15.
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.  相似文献   

16.
One method for improving cancer treatment is the use of nanoparticle drugs functionalized with targeting ligands that recognize receptors expressed selectively by tumor cells. In theory such targeting ligands should specifically deliver the nanoparticle drug to the tumor, increasing drug concentration in the tumor and delivering the drug to its site of action within the tumor tissue. However, the leaky vasculature of tumors combined with a poor lymphatic system allows the passive accumulation, and subsequent retention, of nanosized materials in tumors. Furthermore, a large nanoparticle size may impede tumor penetration. As such, the role of active targeting in nanoparticle delivery is controversial, and it is difficult to predict how a targeted nanoparticle drug will behave in vivo. Here we report in vivo studies for αvβ6-specific H2009.1 peptide targeted liposomal doxorubicin, which increased liposomal delivery and toxicity to lung cancer cells in vitro. We systematically varied ligand affinity, ligand density, ligand stability, liposome dosage, and tumor models to assess the role of active targeting of liposomes to αvβ6. In direct contrast to the in vitro results, we demonstrate no difference in in vivo targeting or efficacy for H2009.1 tetrameric peptide liposomal doxorubicin, compared to control peptide and no peptide liposomes. Examining liposome accumulation and distribution within the tumor demonstrates that the liposome, and not the H2009.1 peptide, drives tumor accumulation, and that both targeted H2009.1 and untargeted liposomes remain in perivascular regions, with little tumor penetration. Thus H2009.1 targeted liposomes fail to improve drug efficacy because the liposome drug platform prevents the H2009.1 peptide from both actively targeting the tumor and binding to tumor cells throughout the tumor tissue. Therefore, using a high affinity and high specificity ligand targeting an over-expressed tumor biomarker does not guarantee enhanced efficacy of a liposomal drug. These results highlight the complexity of in vivo targeting.  相似文献   

17.
血小板源生长因子受体与肿瘤   总被引:4,自引:0,他引:4  
张秀华  林莉萍  丁健 《生命科学》2006,18(3):220-226
血小板源生长因子(platelet-derived growth factor,PDGF)经由其受体(platelet-derived growth fac tor receptor,PDGFR)表现细胞效应。PDGF和PDGFR涉及多种肿瘤的发病机制并在血管生成中起重要作用。PDGF在肿瘤中的自分泌刺激、PDGFR的过表达或过度活化或者刺激肿瘤内血管生成都会促进肿瘤生长;PDGFR的阻断可以降低实体瘤中组织间质液压而增强药物传送。这些机制可能提示在肿瘤治疗中PDGFR抑制剂单用、与化疗药物或者和其他靶点药物联合用药的可能性和可行性。随着PDGFR拮抗剂,如imatinib的上市,PDGFR作为抗肿瘤药物的靶点备受瞩目。  相似文献   

18.
Photochemistry provides a unique mechanism that enables the active control of drug release in cancer-targeting drug delivery. This study investigates the light-mediated release of methotrexate, an anticancer drug, using a photocleavable linker strategy based on o-nitrobenzyl protection. We evaluated two types of the o-nitrobenzyl-linked methotrexate for the drug release study and further extended the study to a fifth-generation poly(amidoamine) dendrimer carrier covalently conjugated with methotrexate via the o-nitrobenzyl linker. We performed the drug release studies by using a combination of three standard analytical methods that include UV/vis spectrometry, (1)H NMR spectroscopy, and anal. HPLC. This article reports that methotrexate is released by the photochemical mechanism in an actively controlled manner. The rate of the drug release varies in response to multiple control parameters, including linker design, light wavelength, exposure time, and the pH of the medium where the drug release occurs.  相似文献   

19.
We describe new DOC (sodium deoxycholate)-heparin nanoparticles for in vivo tumor targeting and inhibition of angiogenesis based on chemical conjugation and the enhanced permeability and retention (EPR) effect. Heparin has been used as a potent anticoagulant agent for 70 years, and has recently been found to inhibit the activity of growth factors which stimulate the smooth muscle cells around tumor. From the results, DOC and heparin were conjugated by bonding carboxyl groups of heparin with amine groups of aminated sodium deoxycholate. Larger antitumor effects of the DOC-heparin VI (8.5 mol of DOC coupled with 1.0 mol heparin) were achieved in animal studies, compared to heparin alone. We confirmed that the conjugated heparin retained its ability to inhibit binding with angiogenic factor, showing a significant decrease in endothelial tubular formation. These results provide new insights into the nontoxic anticancer drug carrier as well as the design of multifunctional bioconjugates for targeted drug delivery.  相似文献   

20.
Biomedical application of nanotechnology is a rapidly developing area that raises new prospect in the improvement of diagnosis and treatment of human diseases. The ability to incorporate drugs or genes into a functionalized nanoparticle demonstrates a new era in pharmacotherapy for delivering drugs or genes selectively to tissues or cells. It is envisioned that the transfer of nanoengineering capability into disease therapy will provide constant and concentrated drug delivery to targeted tissues, minimizing systemic side effects and toxicity. We have in this article highlighted the recent state of the art in nanomedicine, focusing particularly on the achievement of nanotechnology in nanoscale drug and gene delivery in vitro and in vivo. In addition, a specific emphasis has been placed on the use of nanotechnology to improve controlled drug release and sustainable drug delivery in solid tumors and on new drug therapies for age-related neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号