首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eph proteins are receptor tyrosine kinases that control changes in cell shape and migration during development. We now describe a critical role for EphA3 receptor signaling in heart development as revealed by the phenotype of EphA3 null mice. During heart development mesenchymal outgrowths, the atrioventricular endocardial cushions, form in the atrioventricular canal. This morphogenetic event requires endocardial cushion cells to undergo an epithelial to mesenchymal transformation (EMT), and results in the formation of the atrioventricular valves and membranous portions of the atrial and ventricular septa. We show that EphA3 knockouts have significant defects in the development of their atrial septa and atrioventricular endocardial cushions, and that these cardiac abnormalities lead to the death of approximately 75% of homozygous EphA3(-/-) mutants. We demonstrate that EphA3 and its ligand, ephrin-A1, are expressed in adjacent cells in the developing endocardial cushions. We further demonstrate that EphA3(-/-) atrioventricular endocardial cushions are hypoplastic compared to wildtype and that EphA3(-/-) endocardial cushion explants give rise to fewer migrating mesenchymal cells than wildtype explants. Thus our results indicate that EphA3 plays a crucial role in the development and morphogenesis of the cells that give rise to the atrioventricular valves and septa.  相似文献   

2.
Developing animals survive periods of starvation by?protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.  相似文献   

3.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) first discovered as the constitutively active nucleophosmin-ALK oncoprotein in anaplastic large cell lymphomas (ALCL). Full-length ALK has a critical role in normal development and differentiation. Activated full-length ALK also is found in different malignant cancers. Nevertheless, the ligand to activate ALK remained unknown until recently, when ALK was proposed to be the physiological receptor of the cytokine pleiotrophin (PTN, Ptn). However, earlier studies had demonstrated that receptor protein tyrosine phosphatase (RPTP) beta/zeta is a physiological PTN receptor. We now demonstrate that phosphorylation of ALK in PTN-stimulated cells is mediated through the PTN/RPTPbeta/zeta signaling pathway. ALK is phosphorylated independently of a direct interaction of PTN with ALK. The data thus support a unique model of ALK activation. In cells not stimulated by PTN, RPTPbeta/zeta dephosphorylates ALK at the site(s) in ALK that is undergoing autophosphorylation through autoactivation. In contrast, when RPTPbeta/zeta is inactivated in PTN-stimulated cells, the sites that are autophosphorylated in ALK no longer can be dephosphorylated by RPTPbeta/zeta; thus, autoactivation and tyrosine phosphorylation of ALK rapidly increase. The data indicate that the PTN/RPTPbeta/zeta signaling pathway is a critical regulator of the steady state levels of tyrosine phosphorylation and activation of ALK; the data support the conclusion that ALK phosphorylation and activation in PTN-stimulated cells are increased through a unique "alternative mechanism of RTK activation."  相似文献   

4.
The cellular function of the gilgamesh mutation (89B9-12) of casein kinase gene in Drosophila spermatogenesis was studied. It was demonstrated that the sterility resulting from this mutation is connected with the abnormalities in spermatid individualization. A phylogenetic study of the protein sequences of casein kinases 1 from various organisms was conducted. The Gilgamesh protein was shown to be phylogenetically closer to the cytoplasmic casein kinase family, represented by the YCK3, YCK2, and YCK1 proteins of Saccharomyces cerevisiae and animal γ-casein kinases. It is known that these yeast casein kinases are involved in vesicular trafficking, which, in turn, is related in its genetic control to the cell membrane remodeling during spermatid individualization. Thus, the data of phylogenetic analysis fit well the results obtained by studying the mutation phenotype.  相似文献   

5.
The cellular function of the gilgamesh mutation (89B9-12) of casein kinase gene in Drosophila spermatogenesis was studied. It was demonstrated that the sterility resulting from this mutation is connected with the abnormalities in spermatid individualization. A phylogenetic study of the protein sequences of casein kinases 1 from various organisms was conducted. The Gilgamesh protein was shown to be phylogenetically closer to the cytoplasmic casein kinase family, represented by the YCK3, YCK2, and YCK1 proteins of Saccharomyces cerevisiae and animal gamma-casein kinases. It is known that these yeast casein kinases are involved in vesicular trafficking, which, in turn, is related in its genetic control to the cell membrane remodeling during spermatid individualization. Thus, the data of phylogenetic analysis fit well the results obtained by studying the mutation phenotype.  相似文献   

6.
B Z Shilo 《FASEB journal》1992,6(11):2915-2922
Communication between cells is a fundamental component of development and morphogenesis. Identification of the molecules mediating cell-cell communication is crucial for elucidation of the molecular basis of these processes. Receptor tyrosine kinases (RTKs) appear to play a central role in this context by transmitting into cells information dictating their fate. The functions of RTKs in Drosophila are extremely diverse, and include maternal determination of embryonic polarity (torso and torpedo), determination of neuroblast identity (faint little ball), and guidance of tracheal cell migration in the embryo (breathless). During compound eye development, RTKs affect the number of photoreceptor clusters (Ellipse) and the determination of photoreceptor R7 identity (sevenless). The phenotypes of mutations in RTK loci serve as a starting point for understanding processes dictating cell identity at the level of the whole organism. Recently, they have also begun to provide a basis for selection of second-site suppressor mutations, encoding additional elements in their signal transduction pathway. Common themes between the functions, regulation, and signal transduction pathways of Drosophila RTKs are drawn.  相似文献   

7.
The Drosophila melanogaster gene Anaplastic Lymphoma Kinase (Alk) regulates a signal transduction pathway required for founder cell specification within the visceral muscle of the developing embryonic midgut. During embryonic development, the midgut visceral muscle is lined by the endodermal cell layer. In this paper, we have investigated signalling between these two tissues. Here, we show that Alk function is required for decapentaplegic (Dpp) expression and subsequent signalling via the Mad pathway in the developing gut. We propose that not only does Alk signalling regulate founder cell specification and thus fusion in the developing visceral muscle, but that Alk also regulates Dpp signalling between the visceral muscle and the endoderm. This provides an elegant mechanism with which to temporally coordinate visceral muscle fusion and later events in midgut development.  相似文献   

8.
9.
Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor tyrosine kinases, DDR1 and DDR2. Here, we used a recombinant fusion protein between the extracellular domain of DDR1 and alkaline phosphatase to detect specific receptor binding sites during mouse development. Major sites of DDR1-binding activity, indicative of ligand expression, were found in skeletal bones, the skin, and the urogenital tract. Ligand expression in the uterus during implantation and in the mammary gland during pregnancy colocalized with the expression of the DDR1 receptor. The generation of DDR1-null mice by gene targeting yielded homozygous mutant animals that were viable but smaller in size than control littermates. The majority of mutant females were unable to bear offspring due to a lack of proper blastocyst implantation into the uterine wall. When implantation did occur, the mutant females were unable to lactate. Histological analysis showed that the alveolar epithelium failed to secrete milk proteins into the lumen of the mammary gland. The lactational defect appears to be caused by hyperproliferation and abnormal branching of mammary ducts. These results suggest that DDR1 is a key mediator of the stromal-epithelial interaction during ductal morphogenesis in the mammary gland.  相似文献   

10.
The nervous system in many species consists of multiple neuronal cell layers, each forming specific connections with neurons in other layers or other regions of the brain. How layer-specific connectivity is established during development remains largely unknown. In the Drosophila adult visual system, photoreceptor (R cell) axons innervate one of two optic ganglia layers; R1-R6 axons connect to the lamina layer, while R7 and R8 axons project through the lamina into the deeper medulla layer. Here, we show that the receptor tyrosine kinase Off-track (Otk) is specifically required for lamina-specific targeting of R1-R6 axons. Otk is highly expressed on R1-R6 growth cones. In the absence of otk, many R1-R6 axons connect abnormally to medulla instead of innervating lamina. We propose that Otk is a receptor or a component of a receptor complex that recognizes a target-derived signal for R1-R6 axons to innervate the lamina layer.  相似文献   

11.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

12.
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors.  相似文献   

13.
《Epigenetics》2013,8(7):895-898
DNA methylation in AXL, a receptor tyrosine kinase relevant in cancer and immune function, is reportedly highly heritable. We present evidence to suggest that heritability of DNA methylation in AXL is variable, dependent on population characteristics and cell type studied. Moreover, environmental exposures in utero, particularly exposure to maternal smoking, contributes to variation in DNA methylation of select CpG loci that can affect calculations of heritability. Children exposed to maternal smoking in utero had a 2.3% increase (95 % CI 0.3, 4.2) in DNA methylation in AXL, which was magnified in girls as compared to boys. These results present compelling evidence that environmental exposure to tobacco smoke during pregnancy may alter DNA methylation levels in subtle but potentially important ways, and that these changes are persistent years after birth.  相似文献   

14.
Malignant transformation frequently involves aberrant signaling from receptor tyrosine kinases (RTKs). These receptors commonly activate Ras/Raf/MEK/MAPK signaling but when overactivated can also induce the JAK/STAT pathway, originally identified as the signaling cascade downstream of cytokine receptors. Inappropriate activation of STAT has been found in many human cancers. However, the contribution of the JAK/STAT pathway in RTK signaling remains unclear. We have investigated the requirement of the JAK/STAT pathway for signaling by wild-type and mutant forms of the RTK Torso (Tor) using a genetic approach in DROSOPHILA: Our results indicate that the JAK/STAT pathway plays little or no role in signaling by wild-type Tor. In contrast, we find that STAT, encoded by marelle (mrl; DStat92E), is essential for the gain-of-function mutant Tor (Tor(GOF)) to activate ectopic gene expression. Our findings indicate that the Ras/Raf/MEK/MAPK signaling pathway is sufficient to mediate the normal functions of wild-type RTK, whereas the effects of gain-of-function mutant RTK additionally require STAT activation.  相似文献   

15.
16.
Antibodies to the human Shc adaptor protein were used to isolate a cDNA encoding a Drosophila Shc protein (dShc) by screening an expression library. The dshc gene, which maps to position 67B-C on the third chromosome, encodes a 45-kDa protein that is widely expressed throughout the Drosophila life cycle. In flies, the dShc protein physically associates with the activated Drosophila epidermal growth factor receptor homolog (DER) and is inducibly phosphorylated on tyrosine by DER. The 45-kDa dShc protein is closely related both in overall organization and in amino acid sequence (46% identity) to the 52-kDa mammalian Shc isoform. In addition to a C-terminal Src homology 2 (SH2) domain, dShc contains an N-terminal phosphotyrosine-binding (PTB) domain, which associates in vitro with the autophosphorylated DER receptor tyrosine kinase and with phosphopeptides containing an Asn-Pro-X-pTyr motif, where pTyr stands for phosphotyrosine. A potential binding site for the dShc PTB domain is located at Tyr-1228 of DER. These results indicate that the shc gene has been conserved in evolution, as have the binding properties of the Shc PTB and SH2 domains. Despite the close relationship between the Drosophila and mammalian Shc proteins, dShc lacks the high-affinity Grb2-binding site found in mammalian Shc, suggesting that Shc proteins may have functions in addition to regulation of the Ras pathway.  相似文献   

17.
The bacteria in the fruitfly Drosophila melanogaster of different life stages was quantified by 454 pyrosequencing of 16S rRNA gene amplicons. The sequence reads were dominated by 5 operational taxonomic units (OTUs) at ≤ 97% sequence identity that could be assigned to Acetobacter pomorum, A. tropicalis, Lactobacillus brevis, L. fructivorans and L. plantarum. The saturated rarefaction curves and species richness indices indicated that the sampling (85,000-159,000 reads per sample) was comprehensive. Parallel diagnostic PCR assays revealed only minor variation in the complement of the five bacterial species across individual insects and three D. melanogaster strains. Other gut-associated bacteria included 6 OTUs with low %ID to previously reported sequences, raising the possibility that they represent novel taxa within the genera Acetobacter and Lactobacillus. A developmental change in the most abundant species, from L. fructivorans in young adults to A. pomorum in aged adults was identified; changes in gut oxygen tension or immune system function might account for this effect. Host immune responses and disturbance may also contribute to the low bacterial diversity in the Drosophila gut habitat.  相似文献   

18.
Lloyd TE  Atkinson R  Wu MN  Zhou Y  Pennetta G  Bellen HJ 《Cell》2002,108(2):261-269
Signaling through tyrosine kinase receptors (TKRs) is thought to be modulated by receptor-mediated endocytosis and degradation of the receptor in the lysosome. However, factors that regulate endosomal sorting of TKRs are largely unknown. Here, we demonstrate that Hrs (Hepatocyte growth factor-regulated tyrosine kinase substrate) is one such factor. Electron microscopy studies of hrs mutant larvae reveal an impairment in endosome membrane invagination and formation of multivesicular bodies (MVBs). hrs mutant animals fail to degrade active epidermal growth factor (EGF) and Torso TKRs, leading to enhanced signaling and altered embryonic patterning. These data suggest that Hrs and MVB formation function to downregulate TKR signaling.  相似文献   

19.
Anaplastic lymphoma kinase (ALK) is a novel neuronal orphan receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. To determine whether ALK could play a role in neuronal differentiation, we established a model system that allowed us to mimic the normal activation of this receptor. We expressed, in PC12 cells, a chimeric protein in which the extracellular domain of the receptor was replaced by the mouse IgG 2b Fc domain. The Fc domain induced the dimerization and oligomerization of the chimeric protein leading to receptor phosphorylation and activation, thus mimicking the effect of ligand binding, whereas the wild type ALK remained as a monomeric nonphosphorylated protein. Expression of the chimera, but not that of the wild type ALK or of a kinase inactive form of the chimera, induced the differentiation of PC12 cells. Analysis of the signaling pathways involved in this process pointed to an essential role of the mitogen-activated protein kinase cascade. These results are consistent with a role for ALK in neuronal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号