首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populus euramericana cv. I-214 andHelianthus annuus L. cv. Russian Mammoth were exposed to various concentrations of O3 SO2 or NO2 for 2 h in a cylindrical assimilation chamber. The threshold concentrations of air pollutants for inhibition of net photosynthesis differed between the two species and also between the pollutants tested. Furthermore, the lethal concentrations where the net photosynthetic rates were completely inhibited, also differed between species and between pollutants. For SO2 and NO2,P. euramericana was more tolerant photosynthetically thanH. annuus when related to the concentration of pollutants used during the experiment. However, when related to the cumulative uptake rate of each pollutant, the photosynthetic tolerance of the two species was similar. In contrast to the effects of SO2 or NO2, the influence of O3 on net photosynthesis was quite different. The relative rates of net photosynthesis in both species showed the same linear relationship with O3 concentration. However, the relationship between the relative rate of net photosynthesis and the cumulative uptake rate of O3 differed between the two species, although it was linear in both cases.  相似文献   

2.
A. E. Hall 《Oecologia》1979,43(3):299-316
Summary A model of leaf photosynthesis and repiration was developed which adequately predicted carbon dioxide assimilation responses by a C 3 species, Atriplex patula, to light, [CO2], [O2] and temperature in controlled environments. Methods were developed for estimating input parameters using laboratory, controlled environment and field data.  相似文献   

3.
End product feedback effects on photosynthetic electron transport   总被引:7,自引:0,他引:7  
The inhibition of photosynthetic electron transport when starch and sucrose synthesis limit the overall rate of photosynthesis was studied inPhaseolus vulgaris L. andXanthium strumarium L. The starch and sucrose limitation was established by reducing photorespiration by manipulation of the partial pressure of O2 and CO2. Chlorophylla fluorescence quenching, the redox state of Photosystem I (estimated by the redox status of NADP-dependent malate dehydrogenase), and the intermediates of the xanthophyll cycle were investigated. Non-photochemical fluorescence quenching increased, NADP-dependent malate dehydrogenase remained at 100% activity, and the amount of violaxanthin decreased when starch and sucrose synthesis limited photosynthesis. In addition, O2-induced feedback caused a decrease in photochemical quenching. These results are consistent with a downward regulation of photosynthetic electron transport during end product feedback on photosynthesis. When leaves were held in high CO2 for 4 hours, the efficiency of Photosystem II was reduced when subsequently measured under low light. The results indicate that the quantum efficiency of open Photosystem II centers was reduced by the 4 hour treatment. We interpret the results to indicate that feedback from starch and sucrose synthesis on photosynthetic electron transport stimulates mechanisms for dissipating excess light energy but that these mechanisms do not completely protect leaves from long-term inhibition of photosynthetic electron transport capacity.  相似文献   

4.
Abstract Oxygen effects on apparent photosynthetic and dark respiratory O2 exchange rates of detached leaves of Elodea canadensis Michx. (Hydrocharitaceae) were determined over a range of conditions which the submersed plant is likely to experience in shallow water. Apparent photosynthesis is inhibited by O2 under all the experimental regimes of light, temperature, CO2 concentration and pH. This inhibition is not caused solely by an accelerated rate of dark respiration, and the observed variations in O2 inhibition are comparable to O2 effects on photosynthesis and photorespiration of terrestrial C3 plants. Percentage inhibition of apparent photosynthesis is enhanced by high O2 and also by low CO2. These results indicate that high O2, high pH and low CO2 conditions could cause major losses in photosynthetic activity under field conditions. This may account for some of the losses in biomass that are observed under still water conditions.  相似文献   

5.
Oxygen Stimulation of Apparent Photosynthesis in Flaveria linearis   总被引:3,自引:1,他引:2       下载免费PDF全文
A plant was found in the C3-C4 intermediate species, Flaveria linearis, in which apparent photosynthesis is stimulated by atmospheric O2 concentrations. A survey of 44 selfed progeny of the plant showed that the O2 stimulation of apparent photosynthesis was passed on to the progeny. When leaves equilibrated at 210 milliliters per liter O2 were transferred to 20 milliliters per liter O2 apparent photosynthesis was initially stimulated, but gradually declined so that at 30 to 40 minutes the rate was only about 80 to 85% of that at 210 milliliters per liter O2. Switching from 20 to 210 milliliters per liter caused the opposite transition in apparent photosynthesis. All other plants of F. linearis reached steady rates within 5 minutes after switching O2 that were 20 to 24% lower in 210 than in 20 milliliters per liter O2. At low intercellular CO2 concentrations and low irradiances, O2 inhibition of apparent photosynthesis of the aberrant plant was similar to that in normal plants, but at an irradiance of 2 millimoles quanta per square meter per second and near 300 microliters per liter CO2 apparent photosynthesis was consistently higher at 210 than at 20 milliliters per liter O2. In morphology and leaf anatomy, the aberrant plant is like the normal plants in F. linearis. The stimulation of apparent photosynthesis at air levels of O2 in the aberrant plant is similar to other literature reports on observations with C3 plants at high CO2 concentrations, high irradiance and/or low temperatures, and may be related to limitation of photosynthesis by triose phosphate utilization.  相似文献   

6.
The mass transfer rate of 14C-sucrose translocation from sugar beet (Beta vulgaris, L.) leaves was measured over a range of net photosynthesis rates from 0 to 60 milligrams of CO2 decimeters−2 hour−1 under varying conditions of light intensity, CO2 concentration, and O2 concentration. The resulting rate of translocation of labeled photosynthate into total sink tissue was a linear function (slope = 0.18) of the net photosynthesis rate of the source leaf regardless of light intensity (2000, 3700, or 7200 foot-candles), O2 concentration (21% or 1% O2), or CO2 concentration (900 microliters/liter of CO2 to compensation concentration). These data support the theory that the mass transfer rate of translocation under conditions of sufficient sink demand is limited by the net photosynthesis rate or more specifically by sucrose synthesis and this limitation is independent of light intensity per se. The rate of translocation was not saturated even at net photosynthesis rates four times greater than the rate occurring at 300 microliters/liter of CO2, 21% O2, and saturating light intensity.  相似文献   

7.
Agu Laisk  Gerald E. Edwards 《Planta》1998,205(4):632-645
The photosynthetic linear electron transport rate in excess of that used for CO2 reduction was evaluated in Sorghum bicolor Moench. [NADP-malic enzyme (ME)-type C4 plant], Amaranthus cruentus L. (NAD-ME-type C4 plant) and Helianthus annuus L. (C3 plant) leaves at different CO2 and O2 concentrations. The electron transport rate (J F) was calculated from fluorescence using the light partitioning factor (relative PSII cross-section) determined under conditions where excess electron transport was assumed to be negligible: low light intensities, 500 μmol CO2 · mol−1 and 2% O2. Under high light intensities there was a large excess of J F/4 at 10–100% O2 in the C3 plant due to photorespiration, but very little in sorghum and somewhat more in amaranth, showing that photorespiration is suppressed, more in the NADP-ME- and less in the NAD-ME-type species. It is concluded that when C4 photosynthesis is limited by supply of atmospheric CO2 to the C4 cycle, the C3 cycle becomes limited by regeneration of ribulose 1,5-bisphosphate (RuBP) which in turn limits RuBP oxygenase activity and photorespiration. The rate of excess electron transport over that consumed for CO2 fixation in C4 plants was very sensitive to the presence of O2 in the gas phase, rapidly increasing between 0.01 and 0.1% O2, and at 2% O2 it was about two-thirds of that at 21% O2. This shows the importance of the Mehler O2 reduction as an electron sink, compared with photorespiration in C4 plants. However, the rate of the Mehler reaction is still too low to fully account for the extra ATP which is needed in C4 photosynthesis. Received: 8 November 1997 / Accepted: 26 December 1997  相似文献   

8.
The effect of environmental factors on the post-illumination burst of CO2 (PIB) and O2 inhibition of apparent photosynthesis (APS) in wheat (Triticum aestivum L.) was studied in an open gas exchange system utilizing the mathematics of non-steady-state systems. Two components of inhibition by O2 are suggested: one is caused by photorespiration as measured from the maximum rate of the PIB, and the second is direct inhibition as taken as APS2%O2— (APSx%O2+ PIBx%O2) where X is the oxygen concentration. A primary PIB which occurred from 16–28 s after the darkening of the foliage was attributed to photorespiration. No primary PIB was observed at 2% O2. At a CO2 concentration of 100 μ/1 in the atmosphere (about 2.5 μM based on leaf intercellular concentration) and at 30°C and 145 nE/cm2 nE/cm2·s, APS decreased curve-linearly with increasing O2 and reached an O2 compensation point of 560 μM (48% by volume), above which there was a net loss of CO2 in the light. The PIB increased with increasing O2 and became saturated at about 500 μM O2 but decreased above 900 μM O2. Direct inhibition of photosynthesis by O2 increased with increasing O2 concentration. Decreasing CO2 concentration had an effect on the magnitude of the PIB similar to that of increasing O2. At 30°C and 21% O2, the PIB increased with decreasing CO2 down to the CO2 compensation point (I) of 1.4 μM (47 μM/l). Below Γ, both PIB and CO2 evolution into the air in the light (at 21% O2) increased and then decreased at CO2 below 0.8 μM. The ratio of the PIB to APS2% o O2 increased linearly with increasing O2/CO2 ratio where O2 was held constant at 21% and CO2 was varied from 1.4 to 8.5 μM, while direct inhibition of photosynthesis expressed as a proportion of APS2%O2 remained constant over this range. At low CO2 concentration photorespiration as estimated by the PIB is the major part of O2 photosynthesis, while at atmospheric CO2 levels, direct inhibition is the major component. The PIB and APS at 2% and 21% O2 increased hyperbolically with increasing irradiance and all became light-saturated at about 65 nE/cm2 s. The percentage total O2 inhibition of photosynthesis remained constant with increasing irradiance as did the relative contribution of direct O2 inhibition or photorespiration (PIB) to total O2 inhibition. The PIB and APS at 21% O2 had similar temperature optima of 30°C when experimental conditions were adjusted to provide a constant internal O2/CO2 solubility ratio at varying temperatures. However, with a constant external CO2 concentration, the temperature optimum for the PIB shifted upward to 35°C while that for APS at 21% O2 remained at 30°C, which may be due to an increased O2/CO2 concentration in the leaf with increasing temperature.  相似文献   

9.
Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol?1 or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2.  相似文献   

10.
The effect of 21% O2 and 3% O2 on the CO2 exchange of detached wheat leaves was measured in a closed system with an infrared carbon dioxide analyzer. Temperature was varied between 2° and 43°, CO2 concentration between 0.000% and 0.050% and light intensity between 40 ft-c and 1000 ft-c. In most conditions, the apparent rate of photosynthesis was inhibited in 21% O2 compared to 3% O2. The degree of inhibition increased with increasing temperature and decreasing CO2 concentration. Light intensity did not alter the effect of O2 except at light intensities or CO2 concentrations near the compensation point. At high CO2 concentrations and low temperature, O2 inhibition of apparent photosynthesis was absent. At 3% O2, wheat resembled tropical grasses in possessing a high rate of photosynthesis, a temperature optimum for photosynthesis above 30°, and a CO2 compensation point of less than 0.0005% CO2. The effect of O2 on apparent photosynthesis could be ascribed to a combination of stimulation of CO2 production during photosynthesis, and inhibition of photosynthesis itself.  相似文献   

11.
In saturating irradiances of red light, photosynthesis of Laminaria saccharina (L.) Lamouroux was stimulated by low irradiances of continuous blue light only when the supply of dissolved inorganic carbon (DIC) was limiting. The degree of this stimulation was inversely proportional to the logarithm of the concentration of free CO2, whether this was adjusted by varying the total DIC or the pH at a given DIC concentration. The final pH reached in a closed system was higher in blue light than in red light. Both acetazolamide and ethoxyzolamide suppressed the responses to blue light almost completely, but reduced photosynthesis in red light by only 30%. Buffering the pH of the seawater also suppressed the stimulation of photosynthesis by blue light without affecting the photosynthetic rate in red light. The transient stimulation of O2 evolution by a blue light pulse was not accompanied by a corresponding increase in CO2 consumption. These observations could be explained if, in analogy to the mechanism proposed for Ectocarpus (Schmid, Mills & Dring 1996, Plant Cell and Environment 19,373–382, this issue, accompanying paper), photosynthesis was supported by a blue-light-activated release of CO2 from an internal store. We suggest that the store is located in the vacuoles of the cortical tissue of the blades. The main photosynthetic tissue, however, is in the overlying meristoderm, and blue-light-activated mobilization of the store could stimulate O2 evolution only if periplasmic carbonic anhydrase was available to facilitate CO2 uptake from the cortex.  相似文献   

12.
Photosynthesis and respiration were analyzed in natural biofilms by use of O2 microsensors. Depth profiles of gross photosynthesis were obtained from the rate of decrease in O2 concentration during the first few seconds following extinction of light, and net photosynthesis of the photic zone was calculated from O2 concentration gradients measured at steady state. Respiration within the photic zone was calculated as the difference between gross and net photosynthesis. Two types of biofilms were investigated: one dominated by diatoms, and one dominated by cyanobacteria. High O2/CO2 ratios caused increased respiration especially within the diatom biofilm, which could indicate that photorespiration was a dominant O2-consuming process. The rate of respiration was constant within both biofilms during the first 4.6 s following extinction of light, even when respiration was stimulated by high O2/CO2 ratio. The assumption of a constant rate of respiration during the dark period is an essential one for the determination of gross photosynthetic activity by use of O2 microsensors. We here present the first evidence to substantiate this assumption. The results strongly suggest that gross photosynthesis as measured by use of O2 microsensors may include carbon equivalents that are subsequently lost through photorespiration. Computer modeling of photosynthesis profiles measured after 1.1, 1.6, and 2.6 s of dark incubation illustrated how the actual photosynthesis profile could have appeared if it had been possible to do the determination at time 0. Diffusion of O2 during the up to 4.6-s long dark incubations did not affect gross photosynthetic rate when integrated over all depths, but the apparent vertical distribution of the photosynthetic activity was strongly affected.  相似文献   

13.
We compared the CO2- and light-dependence of photosynthesis of four tree species (Acer rubrum, Carya glabra, Cercis canadensis, Liquidambar styraciflua) growing in the understory of a loblolly pine plantation under ambient or ambient plus 200 μl l–1 CO2. Naturally-established saplings were fumigated with a free-air CO2 enrichment system. Light-saturated photosynthetic rates were 159–190% greater for Ce. canadensis saplings grown and measured under elevated CO2. This species had the greatest CO2 stimulation of photosynthesis. Photosynthetic rates were only 59% greater for A. rubrum saplings under CO2 enrichment and Ca. glabra and L. styraciflua had intermediate responses. Elevated CO2 stimulated light-saturated photosynthesis more than the apparent quantum yield. The maximum rate of carboxylation of ribulose-1,5-bisphosphate carboxylase, estimated from gas-exchange measurements, was not consistently affected by growth in elevated CO2. However, the maximum electron transport rate estimated from gas- exchange measurements and from chlorophyll fluorescence, when averaged across species and dates, was approximately 10% higher for saplings in elevated CO2. The proportionately greater stimulation of light-saturated photosynthesis than the apparent quantum yield and elevated rates of maximum electron transport suggests that saplings growing under elevated CO2 make more efficient use of sunflecks. The stimulation of light-saturated photosynthesis by CO2 did not appear to correlate with shade-tolerance ranking of the individual species. However, the species with the greatest enhancement of photosynthesis, Ce. canadensis and L. styraciflua, also invested the greatest proportion of soluble protein in Rubisco. Environmental and endogenous factors affecting N partitioning may partially explain interspecific variation in the photosynthetic response to elevated CO2. Received: 16 February 1999 / Accepted: 30 August 1999  相似文献   

14.
The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given.  相似文献   

15.
Photosynthesis: action spectra for leaves in normal and low oxygen   总被引:1,自引:1,他引:0       下载免费PDF全文
The action spectrum of apparent photosynthesis for attached radish (Raphanus sativus L. var. Early Scarlet Globe) and corn (Zea mays L. var. Pride V.) leaves was measured at 300 μl/l CO2 and both 21% and 2% O2. The spectra were measured at light intensities where apparent photosynthesis was proportional to intensity. For radish, a high compensation point plant, oxygen had an inhibiting effect on photosynthesis at all wavelengths from 402 to 694 mμ. If a constant rate of photosynthesis at 21% O2 for the different wavelengths was chosen, then the percent increase in net CO2 fixation at 2% O2 was constant. For corn, a low compensation point plant, no inhibitory effect of oxygen concentration from 2% to 21% O2 was found over the visible spectrum. The CO2 compensation point for light intensities greater than the light compensation point was found to be constant and independent of wavelength for both radish and corn leaves. For radish, the lowering of the oxygen concentration from 21% to 2% at these intensities was found to reduce the CO2 compensation point by the same amount for the wavelengths studied.  相似文献   

16.
To study the effect of elevated CO2 concentration on plant growth and photosynthesis, two clones ofHevea brasiliensis were grown in polybags and exposed to elevated concentration (700±25ppm) for 60 days. There was higher biomass accumulation, leaf area and better growth when compared to ambient air grown plantso From A/Ci curves it is clear that photosynthetic rates increases with increase in CO2 concentrations. After 60 days of exposure to higher CO2 concentration, a decrease in the carbon assimilation rate was noticed.  相似文献   

17.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

18.
Photosynthesis and photorespiration in whole plants of wheat   总被引:12,自引:11,他引:1       下载免费PDF全文
Wheat was cultivated in a small phytotronic chamber. 18O2 was used to measure the O2 uptake by the plant, which was recorded simultaneously with the O2 evolution, net CO2 uptake, and transpiration. At normal atmospheric CO2 concentration, photorespiration, measured as O2 uptake, was as important as the net photosynthesis. The level of true O2 evolution was independent of CO2 concentration and stayed nearly equal to the sum of net CO2 photosynthesis and O2 uptake. We conclude that at a given light intensity, O2 and CO2 compete for the reducing power produced at constant rate by the light reactions of photosynthesis.  相似文献   

19.
Abstract. It has been shown that atmospheric O2 can either depress or stimulate the rate of apparent photosynthesis of white mustard depending on the environmental conditions: CO2 concentration, light intensity and temperature. Stimulation by O2 was observed only under high photon fluence rate and at high CO2 concentrations. The critical CO2 concentration below which O2 was inhibiting and above which it was stimulating was dependent on the temperature of the assay: for plants grown at 12°C the critical CO2 concentration was 13.35 mmol at 5° C and 21.92 mmol at 10° C. Stimulation by O2 depended also on the growth temperature: for measurements at 26.31 mmol m?3 CO2, O2 was stimulating at temperatures less than 12°C for plants grown at 12°C and less than 19°C for plants grown at 27°C. The efficiency of the O2-dependent stimulation of net photosynthesis was maximum at 9.21 mol m?3 O2 at 26.31 mmol m?3 CO2. Oxygen-stimulation of net photosynthesis was detected in Nicotiana tabacum L. var Samsun, Lycopersicum esculentum L. and Chenopodium album L. At 5°C and under high photon fluence rate, O2 increased the carboxylation capacity of the photosynthetic apparatus of mustard and decreased its affinity for CO2. The O2 inhibition of the net CO2 uptake observed at low CO2 concentrations was the result of a decrease in the affinity for carbon dioxide. The nature of the mechanism which causes the stimulation of photosynthesis is discussed.  相似文献   

20.
Various physiological characteristics of photosynthesis in the unicellular red alga Porphyridium cruentum Naegeli have been investigated. The rate of photosynthesis was optimal at 25° C and pH 7.5 and was not inhibited by 21% oxygen over a temperature range of 5 to 35° C. Kinetics of whole cell photosynthesis as a function of substrate concentration gave a K1/2, (CO2) of 0.3 μM. CO2 compensation point, measured in a closed system at pH 7.5, was a constant 6.7 m?L · L?1 over the temperature range 15 to 30° C and was unaffected by O2 concentration. Whole cell photosynthesis, measured in a closed system at alkaline pH, showed that the rates of oxygen evolution were greatly in excess of the rate of CO2 supply from the spontaneous dehydration of HCO3? in the medium. This indicates that bicarbonate is utilized by the cell to support this photosynthetic rate. These physiological characteristics of Porphyridium cruentum are consistent with the hypothesis that this alga transports bicarbonate across the plasmalemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号