首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two KDO analogues 2,6-anhydro-3-deoxy-D-glycero-D-galacto-octonate and 2,6-anhydro-3-deoxy-D-glycero-D-talo-octonate were synthesized and tested as inhibitors of the enzyme CTP:CMP-deoxyoctulosonate cytidylyltransferase (CMP-KDO synthetase) from Gram-negative bacteria. Only compound 4, the 2-deoxy analogue of beta-KDO-pyranose, was found to be an inhibitor with a Ki of 3.9 microM.  相似文献   

2.
A bioorganometallic approach to malaria therapy led to the discovery of ferroquine (FQ, SSR97193). To assess the importance of the electronic properties of the ferrocenyl group, cyclopentadienyltricarbonylrhenium analogues related to FQ, were synthesized. The reaction of [N-(7-chloro-4-quinolinyl)-1,2-ethanodiamine] with the cyrhetrenylaldehyde complexes (η(5)-C(5)H(4)CHO)Re(CO)(3) and [η(5)-1,2-C(5)H(3)(CH(2)OH)(CHO)]Re(CO)(3) produces the corresponding imine derivatives [η(5)-1,2-C(5)H(3)(R)(CHN-CH(2)CH(2)NH-QN)]Re(CO)(3) R=H 3a; R=CH(2)OH 3b; QN=N-(7-Cl-4-quinolinyl). Reduction of 3a and 3b with sodium borohydride in methanol yields quantitatively the amine complexes [η(5)-1,2-C(5)H(3)(R)(CH(2)-NH-CH(2)CH(2)NH-QN)]Re(CO)(3) R=H 4a; R=CH(2)OH 4b. To establish the role of the cyrethrenyl moiety in the antimalarial activity of this series, purely organic parent compounds were also synthesized and tested. Evaluation of antimalarial activity measured in vitro against the CQ-resistant strains (W2) and the CQ-susceptible strain (3D7) of Plasmodium falciparum indicates that these cyrhetrene conjugates are less active compared to their ferrocene and organic analogues. These data suggest an original mode-of-action of FQ and ferrocenyl analogues in relationship with the redox pharmacophore.  相似文献   

3.
Ammonium 2,6-anhydro-3-deoxy-D-glycero-D-talo-octonate (1), a potent inhibitor of the enzyme CMP-KDO synthetase, its C-2 epimer 2, and the methyl beta- (3) and alpha-glycoside (4) of KDO were studied by 1H- and 13C-n.m.r. spectroscopy. Compound 1 was also analysed by X-ray crystallography. Each compound adopted a 5C2 chair conformation with the side chain equatorial. The preponderant side-chain conformation of 1 in solution was the same as that in the crystal and was stabilised by an intramolecular hydrogen bond from HO-8 to the carboxylate group. This hydrogen bond appeared to be present also in 3. However, the side-chain conformation of 2 and 4 was different from that in 1 and 3. The metal-ion-binding properties, determined on the basis of the line-broadening effects of Mn2+ on the 13C-n.m.r. signals, showed that the carboxylate group was involved in the binding with O-8 in 1 and 3 and with O-6 and O-8 in 2 and 4.  相似文献   

4.
Geometry optimization and energy calculations have been performed at the density functional B3LYP/LANL2DZ level on hydrogen sulfide (HS-), dihydrogensulfide (H2S), thiomethanolate (CH3S-), thiomethanol (CH3SH), thiophenolate (C6H5S-), methoxyde (CH3O-), methanol (CH3OH), formiate (HCOO-), acetate (CH3COO-), carbonate (CO3(2-)), hydrogen carbonate (HCO3-), iminomethane (NH=CH2), [ZnS], [ZnS2]2-, [Zn(HS)]+, [Zn(H2S)]2+, [Zn(HS)4]2-, [Zn(CH3S)]+, [Zn(CH3S)2], [Zn(CH3S)3]-, [Zn(CH3S)4]2-, [Zn(CH3SH)]2+, [Zn(CH3SCH3)]2+, [Zn(C6H5S)]+, [Zn(C6H5S)2], [Zn(C6H5S)3]-, [Zn(HS)(NH=CH2)2]+, [Zn(HS)2(NH=CH2)2], [Zn(HS)(H2O)]+, [Zn(HS)(HCOO)], [Zn(HS)2(HCOO)]-, [Zn(CH3O)]+, [Zn(CH3O)2], [Zn(CH3O)3]-, [Zn(CH3O)4]2, [Zn(CH3OH)]2+, [Zn(HCOO)]+, [Zn(CH3COO)]+, [Zn(CH3COO)2], [Zn(CH3COO)3]-, [Zn(CO3)], [Zn(HCO3)]+, and [Zn(HCO3)(Imz)]+ (Imz, 1,3-imidazole). The computed Zn-S bond distances are 2.174A for [ZnS], 2.274 for [Zn(HS)]+, 2.283 for [Zn(CH3S)]+, and 2.271 for [Zn(C6H5S)]+, showing that sulfide anion forms stronger bonds than substituted sulfides. The nature of the substituents on sulfur influences only slightly the Zn-S distance. The optimized tetra-coordinate [Zn(HS)2(NH=CH2)2] molecules has computed Zn-S and Zn-N bond distances of 2.392 and 2.154A which compare well with the experimental values at the solid state obtained via X-ray diffraction for a number of complex molecules. The computed Zn-O bond distances for chelating carboxylate derivatives like [Zn(HOCOO)]+ (1.998A), [Zn(HCOO)]+ (2.021), and [Zn(CH3COO)]+ (2.001) shows that the strength of the bond is not much influenced by the substituent on carboxylic carbon atom and that CH3- and HO- groups have very similar effects. The DFT analysis shows also that the carboxylate Ligand has a preference for the bidentate mode instead of the monodentate one, at least when the coordination number is small.  相似文献   

5.
Inhibition of 3-deoxy-manno-octulosonate cytidylytransferase (CMP-KDO transferase; EC 2.7.7.38) by 8-amino-2,6-anhydro-3,8-dideoxy-D-glycero-D-talo-octonic acid (NH2dKDO) halts the growth of Gram-negative bacteria by depriving the cells of the 3-deoxy-D-manno-2-octulosonate required for the biosynthesis of the core region of the lipopolysaccharide components of the outer membrane. Low levels of this inhibitor increase the vulnerability of Escherichia coli to hydrophobic antibiotics, detergents, the complement-mediated antibacterial activity of serum, phagocytosis, and enhance the rate at which bacteria are cleared from the mouse bloodstream.  相似文献   

6.
Selective C-8 modifications of 2,6-anhydro-3-deoxy-D-glycero-D-talo-octonic acid ("2,3-dideoxy-beta-D-manno-2-octulosonic acid", 1a) were effected via the protected 8-hydroxy derivatives 2d and 2e. Swern oxidation of 2d and 2e gave the aldehydes 3a and 3b, respectively. Compounds 3a and 3b were converted into the oxime 13b and the O-methyloxime 13c derivatives, respectively. Methodology was developed for selective cleavage of the protecting groups of 13b and 13c to give the deprotected oxime 12m and the deprotected O-methyloxime 12n, respectively. Side chain-extended products were prepared from the aldehyde 3a utilizing Wittig methodology. The branched chain allylic amine 12p was prepared from 3a in a sequence the keys steps of which were preparation of the methyl ketone 19a using LiCuMe2, followed by Swern oxidation, methylenation of 19a using CH2I2-Zn-TiCl4 to give the alkene 19b, followed by Wohl-Ziegler bromination of 19b to give the allylic bromide 19c, and conversion of the latter to the allylic azide 19d. A number of the analogs showed significant activities vs CMP-Kdo synthetase. The most active of these was the side-chain extended alkene 12d, which proved second in activity only to the 9-amino analog (1c).  相似文献   

7.
In order to test the ability of phosphate groups to quench the fluorescence of tryptophan in protein-nucleic acid complexes we have studied the effect of various phosphate ions on the fluorescence of tryptophan derivatives. Unsubstituted and monoalkyl monoanions (H2PO4- and CH3OPO3H-) quench the fluorescence of all investigated indole derivatives while the dimethyl anion (CH3O)2 PO2- does not. This suggests that quenching of tryptophan fluorescence by phosphate monoanions requires the presence of an acidic OH group and could be due to a proton transfer from the phosphate ion to the indole chromophore. Trianions (PO4 3-4) which are strong proton acceptors quench the fluorescence of all tryptophan derivatives except N(1)methyl tryptophan. This result strongly supports our proposal that quenching of tryptophan fluorescence by phosphate trianions occurs through deprotonation of the NH indole group. Bianions (HPO '4(7), and CH3O PO3 2-3) quench the fluorescence of several indole derivatives including N-acetyl tryptophanamide but have no effect on tryptophan or N(1)-methyl tryptophan. From our results we conclude that phosphate groups of nucleic acids are not able to quench the fluorescence of tryptophyl residues in protein-nucleic acid complexes except if an accessible residue is located near a phosphorylated polynucleotide chain end.  相似文献   

8.
The anticonvulsive activity of nociceptin, endogenous OP4 receptors agonist was investigated in pentylenetetrazole (PTZ), N-methyl D-aspartic acid (NMDA), bicucculine (BCC) and electrically evoked seizure models of experimental epilepsy. Nociceptin, at the dose of 10 nmol, suppressed the clonic seizures induced by PTZ, NMDA and BCC. [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 which has been proposed to be selective antagonist OP4 receptors, did not prevent the action of nociceptin. The effect of [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 on seizures induced by PTZ, NMDA and BCC was very similar to that of nociceptin. These data support the hypothesis that it possesses agonistic properties. Naloxone did not reverse the anticonvulsive action of nociceptin as well as [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 which excludes the participation of opioid receptor in this action. On the other hand in the electroconvulsive model of generalized seizures, nociceptin as well as [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 influenced neither the electroconvulsive threshold nor the maximal electroshock test. The data suggest that nociceptin and [Phe1(psi)(CH2-NH)Gly2]nociceptin-(1-13)-NH2 can exert anticonvulsive action. These properties depend on OP4 but not opioid receptors activation.  相似文献   

9.
Twenty-one substituted 1,4-naphthoquinones and five 8-quinolinols and copper(II) chelates were tested for antifungal activity against Candida albicans and Trichophyton mentagrophytes. Compounds containing electron-releasing or weak electron-withdrawing groups in the 2 and 3 positions of the 1,4-naphthoquinone ring were the most active against C. albicans at pH 7.0 in the presence of beef serum in the following order: 2-CH3O = 2,3-(CH3O)2 greater than 2-CH3 greater than 2-CH3S greater than 2-NH2 greater than 2,6-(CH3)2. For T. mentagrophytes under the same conditions the inhibitory 1,4-naphthoquinones contained the substituents 2-CH3O greater than 2,3-(CH3O)2 greater than 2-CH2S greater than 2-CH3 greater than 2-CH3(NaHSO3) greater than 2-NH2 greater than 2-C2H5S, 3-CH3 greater than 2,6-(CH3)2 greater than 2,3-CL2 greater than 5,8-(OH)2.  相似文献   

10.
The fate of terminal (nonreducing) alpha-D-glucopyranosyluronic groups under reductive cleavage conditions was investigated by using the Klebsiella K2 (strain NCTC-418) capsular polysaccharide. Treatment of the fully methylated polysaccharide (1) with triethylsilane and a mixture of trimethylsilyl methanesulfonate (Me3SiOSO2CH3) and boron trifluoride etherate (BF3.Et2O) as the catalyst, resulted in complete cleavage of all glycosidic linkages to yield the expected products, namely 3-O-acetyl-1,5-anhydro-2,4,6-tri-O-methyl-D-glucitol (2), 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-mannitol (3), 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-glucitol (4), and methyl 2,6-anhydro-3,4,5-tri-O-methyl-L-gulonate. Treatment of 1 with trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) as the catalyst resulted in incomplete cleavage of the glycosidic linkage of the methylated D-glucopyranosyluronic group, to yield 4-O-acetyl-1,5-anhydro-2,6-di-O-methyl- 3-O-(methyl2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate )-D-mannitol (9). Reductive cleavage of 1 in the presence of BF3.Et2O resulted in incomplete cleavage of all glycosidic linkages and gave rise to all four dimers (including 9) that could be formed from a tetrasaccharide repeating unit. The proposed structures of these dimers are based upon their composition, as established by chemical ionization mass spectrometry and by the reported structure of the polysaccharide. A small proportion of 1,5-anhydro-2,4,6-tri-O-methyl-3-O-(methyl 2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate)-D-mannitol (12) was also detected in the products of the BF3.Et2O-catalyzed reductive cleavage. The presence of 12 is chemical evidence for the phase of the tetrasaccharide repeating unit in the polysaccharide. The reductive cleavage of 1 was also accomplished after reduction of its ester groups with lithium aluminum hydride. Complete cleavage of all glycosidic linkages was observed when either Me3SiOSO2CF3 or Me3SiOSO2CH3-BF3.Et2O was used to catalyze reductive cleavage, and anhydroalditols 2, 3, 4, and 6-O-acetyl-1,5-anhydro-2,3,4-tri-O-methyl-D-glucitol were produced, as expected.  相似文献   

11.
1. Egg masses of the Planorbid snail Biomphalaria glabrata contain 2-aminoethylphosphonic acid (AEP) in three different chemical environments, as determined by 31P nuclear magnetic resonance spectroscopy, giving signals at 20.9, 21.0 and 23.4 delta. 2. The signal at 21.0 delta decreased in intensity during embryonic development, whereas the other two did not change significantly. 3. The following relationship is suggested: Extraembryonic AEP--------Intraembryonic AEP--------Phosphates. 4. pH Titration behavior of macromolecularly-bound AEP and synthetic derivatives of AEP was examined and indicates that AEP is found in the egg masses linked to other molecules in the following ways: (a) R2-NH-CH2CH2-P(O)(OH)(OR1), (b) R3-NH-CH2-P(O)(OR2)(OR1), (c) NH2-CH2CH2P(O)(OH)(OR1).  相似文献   

12.
T4 RNA ligase catalyzes the synthesis of ATP beta,gamma-bisphosphonate analogues, using the following substrates with the relative velocity rates indicated between brackets: methylenebisphosphonate (pCH(2)p) (100), clodronate (pCCl(2)p) (52), and etidronate (pC(OH)(CH(3))p) (4). The presence of pyrophosphatase about doubled the rate of these syntheses. Pamidronate (pC(OH)(CH(2)-CH(2)-NH(2))p), and alendronate (pC(OH)(CH(2)-CH(2)-CH(2)-NH(2))p) were not substrates of the reaction. Clodronate displaced the AMP moiety of the complex E-AMP in a concentration dependent manner. The K(m) values and the rate of synthesis (k(cat)) determined for the bisphosphonates as substrates of the reaction were, respectively: methylenebisphosphonate, 0.26+/-0.05 mM (0.28+/-0.05 s(-1)); clodronate, 0.54+/-0.14 mM (0.29+/-0.05 s(-1)); and etidronate, 4.3+/-0.5 mM (0.028+/-0.013 s(-1)). In the presence of GTP, and ATP or AppCCl(2)p the relative rate of synthesis of adenosine 5',5'-P(1),P(4)-tetraphosphoguanosine (Ap(4)G) was around 100% and 33%, respectively; the methylenebisphosphonate derivative of ATP (AppCH(2)p) was a very poor substrate for the synthesis of Ap(4)G. To our knowledge this report describes, for the first time, the synthesis of ATP beta,gamma-bisphosphonate analogues by an enzyme different to the classically considered aminoacyl-tRNA synthetases.  相似文献   

13.
Hydrazinonicotinamide (HYNIC) forms stable coordination complexes with Tc-99m when reacted with Tc(V)oxo species such as Tc-mannitol or other Tc-polyhydric complexes. However, radio-HPLC of [Tc-For-MLFK-HYNIC] labeled via Tc-polyhydric ligands demonstrated multiple radiochemical species each with unique biodistribution patterns. This is likely due to the fact that Tc can bind to the hydrazino moiety, as well as polyhydric ligands, in a variety of coordination geometries. Tridentate ligands, such as bis(mercaptoethyl)methylamine (NS2), may constrain the possible coordination geometries and improve overall stability. To investigate this, we synthesized NS2, converted the [Tc-mannitol-For-MLFK-HYNIC] to the corresponding NS2-containing complex [Tc-NS2-For-MLFK-HYNIC], and compared its infection imaging and biodistribution properties with [Tc-mannitol-For-MLFK-HYNIC]. Conversion to the NS2 complex was confirmed by HPLC which showed a single unique hydrophobic species with retention time greater than the [Tc-mannitol-For-MLFK-HYNIC] complex. Imaging experiments with both preparations were performed in rabbits with E. coli infections in the left thigh. Tissue radioactivity measurements demonstrated that compared to Tc-mannitol-peptide, accumulation of Tc-NS2-peptide was lower in blood, heart, and normal muscle and higher in spleen, infected muscle, and pus (p < 0.01). These results indicate that the Tc-NS2-peptide complex is chemically more homogeneous and exhibits improved infection localization and biodistribution properties. In an effort to model the interactions of the metal-HYNIC core with NS2 and related ligand types, the reactions of [ReCl3(NNC5H4NH)(NHNC5H4N)] and [99TcCl3(NNC5H4NH)(NHNC5H4N)], effective structural analogues for the [M(NNC5H4NH(x))2] core, with NS2, C5H3N-2,6-(CH2SH)2, O(CH2CH2SH)2, and S(CH2CH2SH)2 were investigated and the compounds [M[CH3N(CH2CH2S)2](NNC5H4N)(NHNC5H4N] (M = 99Tc (5a), Re (5b)), [Re[C5H3N-2,6-(CH2S)2](NNC5H4N)(NHNC5H4N)].CH2Cl2.0.5MeOH (7), [Re[SCH2CH2)2O] (NNC5H4N)(NHNC5H4N)] (8), and [Re[(SCH2CH2)2S](NNC5H4NH)(NHNC5H4N)]Cl (9) were isolated. Similarly, the reaction of [ReCl3(NNC5H4NH)(NHNC5H4N)] with the bidentate ligands pyridine-2-methanethiol and 3-(trimethlysilyl)pyridine-2-thiol led to the isolation of [ReCl(C5H4N-2-CH2S) (NNC5H4N)(NHNC5H4N)] (10) and [Re(2-SC5H3N-3-SiMe3)2 (NNC5H4N)(NHNC5H4N)] (11), respectively, while reaction with N-methylimidazole-2-thiol yielded the binuclear complex [Re(OH)Cl(SC3H2N2CH3)2(NNC5H4N)2 (NHNC5H4N)2] (12). The analogous metal-(HYNIC-OH) precursor, [ReCl3[NNC5H3NH(CO2R)] [NHNC5H3N(CO2R)]] (R = H, 13a; R = CH3, 13b) has been prepared and coupled to lysine to provide [RCl3[NNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)] [NHNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)]].2HCl (14.2HCl), while the reaction of the methyl ester 13b with 2-mercaptopyridine yields [Re(2-SC5H4N)2[NNC5H3N(CO2Me)][NHNC5H3N(CO2Me)]] (15). While the chemical studies confirm the robustness of the M-HYNIC core (M = Tc, Re) and its persistence in ligand substitution reactions at adjacent coordination sites of the metal, the isolation of oligomeric structures and the insolubility of the peptide conjugates of 13, 14, and 15 underscore the difficulty of characterizing these materials on the macroscopic scale, an observation relevant to the persistent concerns with reagent purity and identity on the tracer level.  相似文献   

14.
Nucleoside phosphorylation by phosphate minerals   总被引:1,自引:0,他引:1  
In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.  相似文献   

15.
Whether selected heterotrophic nitrifiers, as do the autotrophs, conserve energy during the oxidation of their nitrogenous substrates was studied. The examination of proton translocation of four different bacterial nitrifiers capable of pyruvic oxime [(PO), CH3-C(NOH)-COOH] nitrification and by an NH4+ oxidizing Arthrobacter sp. was initiated. Three of the PO nitrifying bacteria, all pseudomonads, oxidize hydroxylamine (NH2OH) at a greater rate than PO and yielded only stoichiometric protons when NH2OH was the reductant. The fourth bacterium, Alcaligenes faecalis ATCC 8750, an adept PO oxidizer, does not appreciably oxidize NH2OH. The bacterium displayed----H+NH2OH ratios far less than if NH2OH was stoichiometrically converted to nitrite. When given NH4+, the Arthrobacter sp. yielded proton translocation patterns which were inconsistent with the metabolic data collected concerning NH4+ oxidation. Thus no data was collected which supported energy conservation via proton translocation by these heterotrophic nitrifiers.  相似文献   

16.
Kinetic analysis of mammalian sialidases was carried out using analogs of the potent sialidase inhibitor, 5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non-2-enonic+ ++ acid (1). Substitutents at C-9 in place of the terminal hydroxyl group included a, 4-azido-2-nitrophenylthio group to give 5-acetamido-2,6-anhydro-9-S-(4-azido-2-nitrophenyl)-3,5, 9-trideoxy-9-thio-D-glycero-D-galacto-non-2-enonic acid (2), and an azide group to give 5-acetamido-2,6-anhydro-9-azido-3,5,9-trideoxy-D-glycero-D-galacto-non-2 -enonic acid (3). Competitive inhibition kinetics were observed when 1,2, and 3 were tested with the lysosomal sialidase (cultured fibroblasts) and the plasma membrane sialidase (adenovirus DNA-transformed, human embryonic kidney cells), giving a Ki of about 10 microM for both enzymes with all three compounds. In contrast, only 1 was a potent inhibitor of the microsomal sialidase (rat muscle).  相似文献   

17.
The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of the capsular K5 polysaccharide. (i) Expression of the K5 polysaccharide and elevated CMP-KDO synthetase activity were observed with bacteria grown at 37 degrees C but not with cells grown at 20 degrees C or below. (ii) The recovery kinetics of capsule expression of intact bacteria, in vitro K5 polysaccharide-synthesizing activity of bacteria, and CMP-KDO synthetase activity of bacteria after temperature upshift from 18 to 37 degrees C were the same. (iii) Chemicals which inhibit capsule (polysaccharide) expression also inhibited the elevation of CMP-KDO synthetase activity. The chromosomal location of the gene responsible for the elevation of this enzyme activity was narrowed down to the distal segment of the transport region of the K5 expression genes.  相似文献   

18.
The eight-carbon acid sugar 3-deoxy-d-manno-2-octulosonate (KDO) is an essential component of Gram-negative bacterial cell walls and capsular polysaccharides. KDO is incorporated into these polymers as CMP-KDO, which is produced in an unusual activation step catalyzed by the enzyme CMP-KDO synthetase. CMP-KDO synthetase activity has traditionally been considered exclusive to Gram-negative bacteria. CMP-KDO synthetase inhibitors attract great interest owing to their potential as selective bactericides. The sugar KDO is also a component of the rhamnogalacturonan II pectin fraction of the primary cell walls of most higher plants and of the cell wall polysaccharides of some green algae. However, the metabolic pathway leading to its incorporation into the plant cell wall is unknown. This paper describes the isolation and characterization of a maize gene, which codes for a protein very similar in sequence and activity to prokaryotic CMP-KDO synthetases. Remarkably, the maize gene can complement a CMP-KDO synthetase (kdsB) Salmonella typhimurium mutant defective in cell wall synthesis. ZmCKS activity is novel in eukaryotes. The evolutionary origin of ZmCKS is discussed in relation to the high degree of conservation between the plant and bacterial genes and its atypical codon usage in maize.  相似文献   

19.
Phenol is metabolized in a denitrifying bacterium in the absence of molecular oxygen via para-carboxylation to 4-hydroxybenzoate (biological Kolbe-Schmitt synthesis). The enzyme system catalyzing the presumptive carboxylation of phenol, tentatively named 'phenol carboxylase', catalyzes an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate (specific activity 0.1 mumol 14CO2 incorporated into 4-hydroxybenzoate x min-1 x mg-1 cell protein) which is considered a partial reaction of the overall enzyme catalysis; 14C from [14C]phenol was not exchanged into 4-hydroxybenzoate ring positions to a significant extent. The 14CO2 isotope exchange reaction was studied in vitro. The reaction was dependent on the substrates CO2 and 4-hydroxybenzoate and required K+ and Mn2+. The actual substrate was CO2 rather than HCO3-. The apparent Km values were 1 mM dissolved CO2, 0.2 mM 4-hydroxybenzoate, 2 mM K+, and 0.1 mM Mn2+. The cationic cocatalysts could be substituted by ions of similar ionic radius: K+ could be replaced to some extent by Rb+, but not by Li+, Na+, Cs+, or NH4+; Mn2+ could be replaced to some extent by Fe2+ greater than Mg2+, Co2+, but not by Ni2+, Zn2+, Ca2+, or Cu2+. The exchange reaction was not strictly specific for 4-hydroxybenzoate, however it required a p-hydroxyl group; derivatives of 4-hydroxybenzoate with OH, CH3 or Cl substituents in m-position did react, whereas those with substitutions in the o-position were inactive or were inhibitory. The enzyme was induced when cells were grown on phenol, but not on 4-hydroxybenzoate. Comparison of SDS/PAGE protein patterns of cells grown on phenol or 4-hydroxybenzoate revealed several additional protein bands in phenol-grown cells. The possible role of similar enzymes in the anaerobic metabolism of phenolic compounds is discussed.  相似文献   

20.
[99%, 1-13C]- and [90%, 2-13C]3-deoxy-D-manno-octulosonic acid (KDO) were prepared enzymatically and used to determine the anomeric specificity of the CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyl transferase (CMP-KDO synthetase) by 13C NMR spectroscopy. Addition of CMP-KDO synthetase to reaction mixtures containing either 1-13C- or 2-13C-labeled KDO resulted in rapid CMP-KDO formation which was accompanied by a substantial decrease in the 13C-enriched resonances of the beta-pyranose form of KDO relative to the resonances of other KDO species in solution, demonstrating that the beta-pyranose is the preferred substrate. Concomitant with the production of CMP-KDO was the appearance of peaks at 174.3 and 101.4 ppm when [1-13C]- and [2-13C]KDO, respectively, were used as substrates. The correspondence of these resonances to the enriched carbons in CMP-KDO was confirmed by the expected 3-bond (3JP,C-1 = 6.9 Hz) and 2-bond coupling (2JP,C-2 = 8.3 Hz) between the labeled carbons and the ketosidically linked phosphoryl group. A large coupling (3J = 5.7 Hz) was observed in proton-coupled spectra of CMP-[1-13C]KDO between carbon 1 and the axial proton at carbon 3 of KDO. The magnitude of this coupling constant supports a diaxial relationship between these two groups and, along with chemical shift data, indicates that KDO retains the beta-configuration when linked in CMP-KDO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号