首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
M. Dudley  R. S. Poethig 《Genetics》1993,133(2):389-399
Teopod1 and Teopod2 are dominant, unlinked mutations in maize that cause dramatic morphological abnormalities, including inappropriate expression of juvenile traits in adult vegetative phytomers and the transformation of reproductive structures into vegetative ones. These phenotypes are consistent with the constitutive expression of a juvenile phase of development throughout shoot growth. To investigate the basis of the Tp1 and Tp2 phenotypes we have analyzed their cell-autonomy in mosaic Teopod:wild-type plants. Mosaic plants were generated by three different mechanisms. Tp1 has previously been shown to be non-cell-autonomous; to verify and extend these results, large wild-type sectors were generated on Tp1 plants by the spontaneous loss of a B-A translocation chromosome containing the Tp1 gene. Analysis of Tp2 cell-autonomy was complicated by a lack of useful markers on chromosome 10L proximal to Tp2. To circumvent this problem two strategies were used. A reciprocal translocation was used to link Tp2 the the wild-type allele of lw2. Sectors were induced in plants of this type by irradiation of imbibed seeds. Also, a chromosome-breaking Ds element located proximal to Tp2 was used to generate somatic sectors that uncovered w2, an albino mutation distal to Tp2. Our results demonstrate conclusively that both Tp1 and Tp2 are non-cell-autonomous. The general use of these techniques for clonal analysis in plants and the potential role of a diffusible factor in regulating the juvenile phase of development in maize are discussed.  相似文献   

2.
Postembryonic shoot development in maize (Zea mays L.) is divided into a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase that differ in the expression of many morphological traits. A reduction in the endogenous levels of bioactive gibberellins (GAs) conditioned by any one of the dwarf1, dwarf3, dwarf5, or another ear1 mutations in maize delays the transition from juvenile vegetative to adult vegetative development and from adult vegetative to reproductive development. Mutant plants cease producing juvenile traits (e.g. epicuticular wax) and begin producing adult traits (e.g. epidermal hairs) later than wild-type plants. They also cease producing leaves and begin producing reproductive structures later than wild-type plants. These mutations greatly enhance most aspects of the phenotype of Teopod1 and Teopod2, suggesting that GAs suppress part but not all of the Teopod phenotype. Application of GA3 to Teopod2 mutants and Teopod1, dwarf3 double mutants confirms this result. We conclude that GAs act in conjunction with several other factors to promote both vegetative and reproductive maturation but affect different developmental phases unequally. Furthermore, the GAs that regulate vegetative and reproductive maturation, like those responsible for stem elongation, are downstream of GA20 in the GA biosynthetic pathway.  相似文献   

3.
Recessive mutations of the early phase change (epc) gene in maize affect several aspects of plant development. These mutations were identified initially because of their striking effect on vegetative phase change. In certain genetic backgrounds, epc mutations reduce the duration of the juvenile vegetative phase of development and cause early flowering, but they have little or no effect on the number of adult leaves. Except for a transient delay in leaf production during germination, mutant plants initiate leaves at a normal rate both during and after embryogenesis. Thus, the early flowering phenotype of epc mutations is explained completely by their effect on the expression of the juvenile phase. The observation that epc mutations block the rejuvenation of leaf primordia in excised shoot apices supports the conclusion that epc is required for the expression of juvenile traits. This phenotype suggests that epc functions normally to promote the expression of the juvenile phase of shoot development and to suppress the expression of the adult phase and that floral induction is initiated by the transition to the adult phase. epc mutations are epistatic to the gibberellin-deficient mutation dwarf1 and interact additively with the dominant gain-of-function mutations Teopod1, Teopod2, and Teopod3. Genetic backgrounds that enhance the mutant phenotype of epc demonstrate that, in addition to its role in phase change, epc is required for the maintenance of the shoot apical meristem, leaf initiation, and root initiation.  相似文献   

4.
Teopod 2 (Tp2) is a semidominant mutation of maize that prolongs the expression of juvenile vegetative traits, increases the total number of leaves produced by the shoot, and transforms reproductive structures into vegetative ones. Here, we show that Tp2 prolongs the duration of vegetative growth without prolonging the overall duration of shoot growth. Mutant shoots produce leaves at the same rate as wild-type plants and continue to produce leaves after wild-type plants have initiated a tassel. Although Tp2/+ plants initiate a tassel later than their wild-type siblings, this mutant tassel ceases differentiation at the same time as, or shortly before, the primary meristem of a wild-type tassel completes its development. To investigate the relationship between the vegetative and reproductive development of the shoot, Tp2/+ and wild-type plants were exposed to floral inductive short day (SD) treatments at various stages of shoot growth. Tassel initiation in wild-type plants (which normally produced 18 to 19 leaves) was maximally sensitive to SD between plastochrons 15 and 16, whereas tassel branching was maximally sensitive to SD between plastochrons 15 and 18. Tassel initiation and tassel morphology in Tp2/+ plants (which normally produced 21 to 26 leaves) were both maximally sensitive to SD between plastochrons 15 and 18. Thus, the constitutive expression of a juvenile vegetative program in Tp2/+ plants does not significantly delay the reproductive maturation of the shoot.  相似文献   

5.
Teopod2 (Tp2) is a semi-dominant mutation of maize that prolongs the expression of characteristics normally confined to the juvenile phase of development. Two of the many dramatic morphological effects of this mutation are an increase in the number of vegetative nodes, and a reduction in the overall size of the shoot. To determine the cellular basis of these phenotypes, the technique of clonal analysis was used to compare the cell division patterns of wild-type and Tp2 plants. Our results indicate that Tp2 increases the number of vegetative nodes produced by the apicalmost cells in the meristem but does not affect the cell lineage of the basal, juvenile, part of the shoot. This result demonstrates that Tp2 does not act uniquely in a 'juvenile' domain of the meristem, but instead causes cells that are normally destined to produce adult structures to express juvenile traits inappropriately. Clonal analysis also demonstrates that Tp2 does not affect the size of the meristem prior to germination, nor does it affect the cell lineage of the basic structural unit of the stem, the phytomer. Thus the effects of this mutation on the size of the shoot are the result of changes in cell fate late in development.  相似文献   

6.
Post-embryonic shoot development in plants can be divided into a juvenile vegetative, an adult vegetative, and a reproductive phase, which are expressed in different domains on the shoot axis. The number and position of the phytomers in each phase are determined by the time at which a plant begins and ceases making phytomers of a particular phase and the rate at which phytomers are made during that phase. The viviparous8 (vp8) mutation of maize increases the number of juvenile vegetative phytomers and decreases the number of adult vegetative phytomers by affecting both of these processes. vp8 increases the number of juvenile vegetative phytomers by increasing the rate of leaf initiation early in shoot development and delaying the juvenile-to-adult transition (vegetative maturation). It reduces the number of adult phytomers because the delay in vegetative maturation is not matched by a corresponding delay in flowering time; vp8 plants produce a tassel at the same time as wild-type plants. Thus, Vp8 normally controls the production of a factor that functions both to repress the rate of growth early in shoot development and to promote vegetative maturation, but which has no major role in floral induction. vp8 dramatically enhances the phenotypes of the dwarf and Teopod mutants and requires a functional Glossy15 gene to prolong the expression of juvenile epidermal traits. Evidence suggesting that vp8 does not affect phase change by reducing the level of abscisic acid is discussed.  相似文献   

7.
The three major components of the maize leaf are the blade, the sheath, and at their junction, the ligular region. Each exhibits specific cell types and organization. Four dominant Liguleless (Lg) mutations (Lg3-O, Lg4-O, Lg*347, and Lg*9167) in at least three different genes cause a similar morphological phenotype in leaves, although each mutation affects a distinct domain of the blade. Mutant leaves display regions of altered cell fate in the blade, occompanied by elimination of ligule and auricle at their wild-type positions and development of ligule and auricle in the blade at the borders of the altered regions. The affected blade cells are transformed into sheath-like cells, as determined by morphological and genetic tests. Lg4-O expressivity is highly dependent on genetic background. For example, two different backgrounds may specify converse patterns of phenotypic expression. Lg4-O expressivity is also affected by the heterochronic mutation Teopod2 (Tp2). Gene dosage experiments indicate that Lg4-O is a neomorph. Interactions between recessive lg mutations (which eliminate ligular structures) and the dominant Lg mutations suggest that the lg+ genes act after the Lg mutations. Lg3-O and Lg4-O act semidominantly, and interact with each other and with other mutations in the Knotted1 (Kn1)-like family (a family in which dominant mutant alleles cause blade to sheath transformation phenotypes). These interactions suggest that the above Kn1-like mutations may function similarly in the leaf. We discuss the similarities between the Lg mutations and the other mutations of the Kn1-like family, which led us to postulate that lg3 and lg4 are members of a growing family of kn1-like (knox) homeobox genes that are identified by dominant mutant alleles causing leaf transformation phenotypes. We also propose that certain key characteristics of this family of dominant neomorphic mutations are important for generating meaningful morphological changes during evolution. © 1996 Wiley-Liss, Inc.  相似文献   

8.
We characterized allelic variation at barren inflorescence2 ( bif2 ), a maize co-ortholog of the Arabidopsis PINOID protein kinase ( PID ), and tested for trait associations with bif2 in both an association mapping population of 277 diverse maize inbreds and in the inter-mated B73 × Mo17 (IBM) linkage population. Results from the quantitative analyses were compared with previous reports of bif2 phenotypes in mutagenesis studies. All three approaches (association, linkage, and mutagenesis) detect a significant effect of bif2 on tassel architecture. Association mapping implicates bif2 in an unexpectedly wide range of traits including plant height, node number, leaf length, and flowering time. Linkage mapping finds a significant interaction effect for node number between bif2 and other loci, in keeping with previous reports that bif2 ; spi1 and Bif2 ; Bif1 double mutants produce fewer phytomers. The Mo17 allele is associated with a reduced tassel branch zone and shows lower expression than the B73 allele in hybrid B73–Mo17 F1 inflorescences, consistent with the complete absence of tassel branches in the bif2 knockout mutant. Overall, these data suggest that allelic variation at bif2 affects maize architecture by modulating auxin transport during vegetative and inflorescence development.  相似文献   

9.
Moose SP  Sisco PH 《The Plant cell》1994,6(10):1343-1355
Loss-of-function mutations at the maize Glossy15 (Gl15) locus alter the normal transition from juvenile-to-adult growth by conditioning the abbreviated expression of juvenile epidermal cell traits and the coordinate precocious expression of adult epidermal cell features. These include epicuticular wax composition, cell wall characteristics, and the presence or absence of differentiated epidermal cell types (e.g., epidermal macrohairs and bulliform cells). A transposon-induced mutable allele of Glossy15 (gl15-m1) was isolated and employed in both phenotypic and genetic analyses to characterize the role of Gl15 in the maize juvenile-to-adult phase transition. Comparisons between Gl15-active and Gl15-inactive somatic sectors in the leaves of variegated plants demonstrated that the Gl15 gene product acts in a cell-autonomous manner to direct juvenile epidermal differentiation but does not affect factors that regulate the overall process of phase change. Examination of the gl15-m1 phenotype in the Corngrass1, Teopod1, and Teopod2 mutant backgrounds showed that the prolonged expression of juvenile epidermal traits associated with these mutations also required Gl15 activity. These results support a model whereby the cell-autonomous Gl15 gene product responds to a juvenility program that operates throughout the vegetative shoot to condition the juvenile differentiation of maize leaf epidermal cells.  相似文献   

10.
11.
Li J  Chen X 《Plant physiology》2003,132(4):1913-1924
Exportin-t was first identified in humans as a protein that mediates the export of tRNAs from the nucleus to the cytoplasm. Mutations in Los1p, the Saccharomyces cerevisiae exportin-t homolog, result in nuclear accumulation of tRNAs. Because no exportin-t mutants have been reported in multicellular organisms, the developmental functions of exportin-t have not been determined. Here, we report the isolation and characterization of two Arabidopsis exportin-t mutants, paused-5 and paused-6. The mutant phenotypes indicate that exportin-t acts pleiotropically in plant development. In particular, paused-5 and paused-6 result in delayed leaf formation during vegetative development. The two paused mutations also cause the transformation of reproductive organs into perianth organs in the hua1-1 hua2-1 background, which is partially defective in reproductive organ identity specification. The floral phenotypes of hua1-1 hua2-1 paused mutants resemble those of mutations in the floral homeotic gene AGAMOUS. Moreover, paused-5 enhances the mutant phenotypes of two floral meristem identity genes, LEAFY and APETALA1. The developmental defects caused by paused mutations confirm the important roles of exportin-t in gene expression in multicellular organisms. In addition, a paused null allele, paused-6, is still viable, suggesting the presence of redundant tRNA export pathway(s) in Arabidopsis.  相似文献   

12.
In higher plants, developmental phase changes are regulated by a complex gene network. Loss-of-function mutations in the EMBRYONIC FLOWER genes (EMF1 and EMF2) cause Arabidopsis to flower directly, bypassing vegetative shoot growth. This phenotype suggests that the EMF genes play a major role in repression of the reproductive program. Positional cloning of EMF2 revealed that it encodes a zinc finger protein similar to FERTILIZATION-INDEPENDENT SEED2 and VERNALIZATION2 of Arabidopsis. These genes are characterized as structural homologs of Suppressor of zeste 12 [Su(z)12], a novel Polycomb group gene currently identified in Drosophila. In situ hybridization studies have demonstrated that EMF2 RNA is found in developing embryos, in both the vegetative and the reproductive shoot meristems, and in lateral organ primordia. Transgenic suppression of EMF2 produced a spectrum of early-flowering phenotypes, including emf2 mutant-like phenotype. This result confirms the role of EMF2 in phase transitions by repressing reproductive development.  相似文献   

13.
14.
15.
Summary A leaf disc method is described to permit the localized incorporation of 35S-l-methionine into polypeptides synthesized in individual leaves of maize plants grown in the field. The method of incorporation employs minimal external manipulation of the intact leaf, is simple, repeatable, and may be used at any plant age after leaf emergence. Incorporation (cpm/g protein) in 12 leaves per plant was compared among three inbred (Oh43, W23, M14) and three F1 hybrid (Oh43/M14, W23/M14, Oh43/W23) genotypes. The incorporation was 40% higher (hybrid versus inbred) in 9 of the 12 leaves studied. Samples from leaf 07 (7th leaf numbered from base of plant) for four inbreds (Oh43, M14, B73, Mol 7) and two pairs of reciprocal F1 hybrids (Oh43/M14, M14/Oh43; B73/Mo17, Mo17/B73) were labelled in situ using the leaf disc method. Each cultivar was sampled at three different ages in each of 1985, 1986, and 1987. High-resolution, two-dimensional isoelectric focusing sodium-dodecyl-sulfate polyacrylamide gel electrophoresis and fluorography were used to display the polypeptides synthesized in the samples. Multivariate methods — Principal Coordinate Analysis, Cluster Analysis, and Standard Deviation Distance — were used to analyze variation and to identify trends in the variation for year, genotype, and age sampled. Our analyses disclose a hierarchy to polypeptide synthesis variation in maize leaves: differences in polypeptide synthesis are greater for year-to-year comparisons than differences due to sample age, which in turn are greater than differences for inbred versus hybrid comparisons.  相似文献   

16.
Investigation of low-temperature (LT) tolerance in cereals has commonly led to the region of the vyn-A1 vernalization gene or its homologue in related genomes. Two cultivars, one a non-hardy spring wheat and one a very cold-hardy winter wheat, whose growth habits are determined by the Vrn-A1 (spring habit) and vrn-A1 (winter habit) alleles, were chosen to produce reciprocal near-isogenic lines (NILs). These lines were then used to determine the relationship between rate of phenological development and the degree and duration of LT tolerance gene expression. Each allele was isolated in the genetic backgrounds of the non-hardy spring wheat 'Manitou' and the very cold-hardy winter wheat 'Norstar'. The effects of each allele on phenological development and low-temperature tolerance (LT50) were determined at regular intervals over a 4 degrees C acclimation period of 0-98 d. The vegetative/reproductive transition, as determined by final leaf number (FLN), was found to be a major developmental factor influencing LT tolerance. Possession of a vernalization requirement increased both the length of the vegetative growth phase and LT tolerance. Similarly, increased FLN in spring Norstar and winter Manitou NILs delayed their vegetative/reproductive transition and increased their LT tolerance relative to Manitou. Although the winter Manitou NILs had a lower FLN than the spring Norstar NILs, they were able to extend their vegetative stage to a similar length by increasing the phyllochron (interval between the appearance of successive leaves). Cereal plants have four ways of increasing the length of the vegetative phase, all of which extend the time that low-temperature tolerance genes are more highly expressed: (1) vernalization; (2) photoperiod responses; (3) increased leaf number; and (4) increased length of the phyllochron.  相似文献   

17.
The invasive grass Microstegium vimineum grows in low light beneath the canopy of eastern forests in North America by reiteration of modules (phytomers) along a tiller. Basal phytomers are vegetative; terminal phytomers produce a raceme of chasmogamous (CH) spikelets plus an axillary raceme of cleistogamous (CL) spikelets. Additional subterminal phytomers with CL racemes mature basipetally. Allocation to culms, leaves, and CH and CL within phytomers was examined in relation to light conditions for a population in New Jersey, USA. Plants were reared in a greenhouse from seed families of parents in deep shade (2-8% full sun) or sunny, edge habitats. Primary tillers were subdivided into phytomers, dried, and weighed. Tillers from field habitats were similarly treated. For vegetative and subterminal phytomers, allocation to leaves and CH was greatest for the shady habitat. CL allocation decreased from terminal to reproductively immature subterminal phytomers. CH and CL mass was positively correlated with leaf mass, suggesting that reproduction is determined by available photosynthate. CH mass showed a genetic correlation with leaf mass. Developmental plasticity in modular allocation allows Microstegium to maximize fitness when conditions are favorable (e.g., high light along forest edges) by continual maturation of CL caryopses on axillary racemes.  相似文献   

18.

Key message

Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs.

Abstract

Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees–Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees–Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.
  相似文献   

19.
Laboratory inbred mouse models are a valuable resource to identify quantitative trait loci (QTL) for complex reproductive performance traits. Advances in mouse genomics and high density single nucleotide polymorphism mapping has enabled genome-wide association studies to identify genes linked with specific phenotypes. Gene expression profiles of reproductive tissues also provide potentially useful information for identifying genes that play an important role. We have developed a highly fecund inbred strain, QSi5, with accompanying genotyping for comparative analysis of reproductive performance. Here we analyzed the QSi5 phenotype using a comparative analysis with fecundity data derived from 22 inbred strains of mice from the Mouse Phenome Project, and integration with published expression data from mouse ovary development. Using a haplotype association approach, 400 fecundity-associated regions (FDR < 0.05) with 499 underlying genes were identified. The most significant associations were located on Chromosomes 14, 8, and 6, and the genes underlying these regions were extracted. When these genes were analyzed for expression in an ovarian development profile (GSE6916) several distinctive co-expression patterns across each developmental stage were identified. The genetic analysis also refined 21 fecundity associated intervals on Chromosomes 1, 6, 9, 13, and 17 that overlapped with previously reported reproductive performance QTL. The combined use of phenotypic and in silico data with an integrative genomic analysis provides a powerful tool for elucidating the molecular mechanisms underlying fecundity.  相似文献   

20.
Summary Cytoplasmic reversion to fertility in cms-S maize has been previously correlated with changes in mitochondrial genome organization, specifically with loss of the autonomously replicating linear plasmid-like DNAs, S1 and S2, and with accompanying alterations in the high molecular weight mtDNA (main genome) that specifically involved S1 and S2 sequences. These studies, however, dealt with cytoplasmic revertants occurring in the cms-VG M825 inbred line and in the cms-VG M825/Oh07 F1 hybrid. This paper deals principally with patterns of mitochondrial DNA reorganization accompanying cytoplasmic reversion to fertility in the WF9 inbred line nuclear background. Here the free S1 and S2 plasmid-like DNAs are retained in the revertants. Mitochondrial DNA analysis by Southern hybridization using cloned fragments of S1 and S2 shows altered organization around S-homologous regions in the main mitochondrial genome of revertants as compared with that of the male-sterile parental controls, but the pattern of main genome changes involving these regions differs from that of the cytoplasmic revertants that occurred in M825 and M825/Oh07 backgrounds. Similar experiments using a clone of the cytochrome oxidase I (COX I) gene of maize as a probe indicate that reorganization in this region is also involved in the changes in mtDNA that accompany cytoplasmic reversion to male fertility in cms-S WF9. The heterogeneity in patterns of reorganization of the main mtDNA genome that accompany cytoplasmic reversion in the same and different nuclear backgrounds are discussed in relation to cytoplasmic male sterility (CMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号