首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Water in barnacle muscle has been studied using NMR techniques. Fresh fibers are compared with membrane-damaged fibers treated with solutes that greatly alter fixed charge and total water content. Both water (97%) and solute (3%) protons are visible in continuous wave spectra of oriented fresh fibers. No local field inhomogeneities were detected, nor are cell solutes significantly bound. In pulse experiments, all cell water is visible and exhibits a single exponential decay. In fresh fibers, T2 approximately or equal to 40 ms; faster decaying signals are assigned to immobile and mobile protons on macromolecules. T1 and T1p are frequency dependent. Using equations derived for a two-compartment model with fast exchange, we calculate the following: tau b, the correlation time for anisotropic rotational motion of bound water; Sb, its order parameter; tau ex, the correlation time for exchange between bound and free fractions; f, the fraction of water bound; and Hr, the grams of water bound per gram of macromolecule. Whereas f varies inversely with total water content, the other parameters are virtually constant, with values: tau b approximately or equal to 1.3 X 10(-8) S; tau ex approximately or equal to 8 X 10(-6) s; Sb approximately or equal to 0.06; and Hr approximately or equal to 0.1g H2O/g macromolecule. Thus, the NMR relaxation detectable properties of water bound to macromolecules are unaffected by solutes that greatly alter the macromolecular surface charge.  相似文献   

2.
A practical method is described for determining some characteristics of the spectrum of proton mobilities in a hydrated system from the frequency dependence of the nuclear magnetic resonance (NMR) relaxation processes. The technique is applied to water in association with agarose and gelatin. The results for agarose are consistent with the hypothesis that a fraction of the protons is distributed over states of reduced mobility and exchanges rapidly with the remaining fraction which is attributed to water in the normal state. No variation in the characteristics of the modified fraction could be detected for water concentrations in the range 1.2-50 g H2O/g agarose. Within the modified fraction, higher mobilities are more common than low mobilities; at 1.2 g H2O/g agarose, not more than 10% of the proton population has mobilities more than 100 times smaller than normal. The modified proton fraction is tentatively identified with agarose hydroxyl protons and possibly water molecules bound to the polymer. Proton states with mobilities intermediate between water and ice have also been detected in hydrated gelatin. As in agarose, higher mobilities are the most common. In contrast to agarose, the characteristics of the modified proton states are markedly dependent on water concentration. They are tentatively attributed to gelatin protons coupled for spinlattice relaxation with those of the bulk phase by exchange and spin diffusion.  相似文献   

3.
Spin-spin relaxation time (T2), spin-lattice relaxation time (T1), and spin-lattice relaxation time in the rotating frame (T1p) of water protons in solutions of bacteriophage T2 were studied by pulsed nuclear magnetic resonance. The frequency dependence of the measurements exhibits a dispersion implying existence of a fraction of water molecules in solution with a correlation time distribution centered at approximately 10(-5) sec which is strongly influenced by the reorientational motions of virus particles. Experiments were carried out with two forms of bacteriophage T2 existing at pH 5.4 and 7.8 respectively. The different structures of the virus at these two pH values are reflected in the NMR relaxation behavior of water protons.  相似文献   

4.
Results have been obtained on the quasi-elastic spectra of neutrons scattered from pure water, a 20% agarose gel (hydration four grams H2O per gram of dry solid) and cysts of the brine shrimp Artemia for hydrations between 0.10 and 1.2 grams H2O per gram of dry solids. The spectra were interpreted using a two-component model that included contributions from the covalently bonded protons and the hydration water, and a mobile water fraction. The mobile fraction was described by a jump-diffusion correlation function for the translation motion and a simple diffusive orientational correlation function. The results for the line widths gamma (Q2) for pure water were in good agreement with previous measurements. The agarose results were consistent with NMR measurements that show a slightly reduced translational diffusion for the mobile water fraction. The Artemia results show that the translational diffusion coefficient of the mobile water fraction was greatly reduced from that of pure water. The line width was determined mainly by the rotational motion, which was also substantially reduced from the pure water value as determined from dielectric relaxation studies. The translational and rotational diffusion parameters were consistent with the NMR measurements of diffusion and relaxation. Values for the hydration fraction and the mean square thermal displacement [u2] as determined from the Q-dependence of the line areas were also obtained.  相似文献   

5.
Water proton spin-lattice relaxation is studied in dilute solutions of bovine serum albumin as a function of magnetic field strength, oxygen concentration, and solvent deuteration. In contrast to previous studies conducted at high protein concentrations, the observed relaxation dispersion is accurately Lorentzian with an effective correlation time of 41 +/- 3 ns when measured at low proton and low protein concentrations to minimize protein aggregation. Elimination of oxygen flattens the relaxation dispersion profile above the rotational inflection frequency, nearly eliminating the high field tail previously attributed to a distribution of exchange times for either whole water molecules or individual protons at the protein-water interface. The small high-field dispersion that remains is attributed to motion of the bound water molecules on the protein or to internal protein motions on a time scale of order one ns. Measurements as a function of isotope composition permit separation of intramolecular and intermolecular relaxation contributions. The magnitude of the intramolecular proton-proton relaxation rate constant is interpreted in terms of 25 +/- 4 water molecules that are bound rigidly to the protein for a time long compared with the rotational correlation time of 42 ns. This number of bound water molecules neglects the possibility of local motions of the water in the binding site; inclusion of these effects may increase the number of bound water molecules by 50%.  相似文献   

6.
The spin-lattice relaxation time (T1) of water protons in mouse muscle was studied from 10(4) to 10(8) Hz at several temperatures, and the deuteron T1 of muscle water was studied from 2.0 X 10(3) to 1.54 X 10(7) Hz at several temperatures. Proton T1's of muscle and brain water with different D2O contents were measured at 25 degrees C and 35 MHz. From the results of variable frequency and temperature measurements and the data of isotope substitution, it is concluded that the major relaxation mechanism for the protons in muscle water is the intermolecular dipolar interaction between the protons of the macromolecules and the protons of the water molecules in the hydration layer. It is also suggested that the relaxation of deuterons can be accounted for a very small fraction of water molecules directly hydrogen-bonded to the macromolecules.  相似文献   

7.
The dynamic properties of water in the hydration shell of hemoglobin have been studied by means of dielectric permittivity measurements and nuclear magnetic resonance spectroscopy. The temperature behavior of the complex permittivity of hemoglobin solutions has been measured at 3.02, 3.98, 8.59, and 10.80 GHz. At a temperature of 298 K the average rotational correlation time tau of water within a hydration shell of 0.5-nm thickness is determined from the activation parameters to be 68 +/- 10 ps, which is 8-fold the corresponding value of bulk water. Solvent proton magnetic relaxation induced by electron-nuclear dipole interaction between hemoglobin bound nitroxide spin labels and water protons is used to determine the translational diffusion coefficient D(T) of the hydration water. The temperature dependent relaxation behavior for Lamor frequencies between 3 and 90 MHz yields an average value D(298K) = (5 +/- 2) x 10(-10)m2 s-1, which is about one-fifth of the corresponding value of bulk water. The decrease of the water mobility in the hydration shell compared to the bulk is mainly due to an enhanced activation enthalpy.  相似文献   

8.
Steady-state and pulsed NMR techniques have been used to investigate molecular motion in sols and gels of agarose. In passing through the sol–gel transition, the molecular mobility of water molecules is reduced only by a small amount, whereas motion of the polymer chains is greatly attenuated. The results are discused in terms of the network theory of gelation, with references to the role of water in the process and the nature of the “junction zones” between polymer chains. T2 and line-width measurements are dominated by exchange broadening. The effects of exchange rate and differences in relaxation time between the exchanging sites are discussed. The temperature hysteresis behavior of agarose gels has been investigated and the effects of “ageing” correlated with changes in nuclear relaxation times. The synergistic increase in gel strength obtained on adding locust bean gum (LBG) to agarose has been investigated. The results indicate that LBG does not form double-helix junctions and may decrease rates of gelation by steric effects. At high agarose concentration, the LBG remains mainly in solution in interstitial water, but at low agarose concentration, it is suggested that the LBG can link gel aggregates together into a self-supporting structure, producing a synergistic increase in gel strength. Comparisons have been made between the nature of the agarose–LBG interaction and agarose–cellulose interactions in biological systems.  相似文献   

9.
Chemical shift and relaxation time measurements on the water protons in polyelectrolyte solutions containing divalent paramagnetic counterions have shown the existence of three types of counterions: - site bound with loss of water molecules and partial or complete release of the electrostriction in the first hydration sphere, - atmospherically trapped with no change in hydration, - free. The overall stoichiometry of the two former is in agreement with Manning's fraction of condensed counterions. A complete analysis of the frequency dependent contribution of site bound counterions to the water protons relaxation times leads us to interesting conclusions on the modifications of the first hydration shell and on the life time of site binding.  相似文献   

10.
The NMR spin-grouping technique is applied to low hydration oriented fibers of NaDNA to study the role of exchange in determining the apparent (observed) spin relaxation of the system. The analysis proceeds in three steps: first, the apparent proton relaxation is measured at high fields, with both selective and nonselective inversion pulse sequences, and in the rotating frame. The spin-grouping technique is used in all spin-lattice relaxation measurements to provide the optimum apparent relaxation characterization of the sample. Next, all apparent results are analyzed for exchange. In this analysis the results from the high field and rotating frame experiments (which probe the exchange at two different time scales) are correlated to determine the inherent (or true) spin relaxation parameters of each of the proton groups in the system. The results of selective inversion T1 measurements are also incorporated into the exchange analysis. Finally, the dynamics of each spin group are inferred from the inherent relaxation characterization. The low hydration NaDNA structure is such that the exchange between the protons on the water and those on the NaDNA is limited, a priori, to dipolar mixing. The results of the exchange analysis indicate that the dipolar mixing between water and NaDNA protons is faster than the spin diffusion within the NaDNA proton group itself. The spin-diffusion on the macromolecule is the bottleneck for the exchange between the water protons and the NaDNA protons. The water protons serve as the relaxation sink both at high fields and in the rotating frame for the total NaDNA-water spin bath. The inherent relaxation of the water is characteristic of water undergoing anisotropic motion with a fast reorientational correlation time about one axis (5 X 10(-10) less than or equal to tau r less than or equal to 8 X 10(-9)S) which is about three orders of magnitude slower than that of water in the bulk; and a slow tumbling correlation time for this axis (1.5 x 10(-7) less than or equal to tau t less than or equal to 8 x 10(-7)S) which is two orders of magnitude slower yet.  相似文献   

11.
We studied the spin-echo signal of muscle water in a large time domain and found that the motion of the nuclear magnetic moment of tissue water cannot be characterized by a single spin-lattice relaxation time (T1). The relaxation time T1B, which is the T1 characterized by those protons with a slower relaxation rate, is influenced by the early post mortem changes in skeletal muscle. T1B increased with time after the tissue was taken from the animal and reached a maximum at 3 h. However, the weighted average of T1 of all water protons (T1A) did not change throughout the time course of the experiments.  相似文献   

12.
The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively.  相似文献   

13.
Water T2 relaxation in sugar solutions   总被引:2,自引:0,他引:2  
1H spin-spin relaxation times of water were measured with the CPMG sequence in dilute aqueous solutions of glucitol, mannitol, glycerol, glycol, the methyl D-pyranosides of alpha-glucose, beta-glucose, alpha-galactose, beta-galactose, alpha-xylose, beta-xylose, beta-arabinose and sucrose, alpha,alpha-trehalose, beta-maltose, maltotriose and maltoheptaose. The relaxation-time dispersion was measured by varying the CPMG pulse spacing, tau. These data were interpreted by means of the Carver-Richards model in which exchange between water protons and labile solute hydroxyl protons provides a significant contribution to the relaxation. From the dependences on temperature and tau, parameters characteristic of the pool of hydroxyls belonging to a given solute were extracted by nonlinear regression, including: the fraction of exchangeable protons, P, the chemical-shift difference between water protons and hydroxyl protons, deltaomega, the intrinsic spin-spin relaxation time, T2, and the chemical exchange rate, k. These solute-specific parameters are related, respectively, to the concentration, identity, mobility and exchange life-time of the hydroxyl site. At 298 K, values of deltaomega, T2 and k were found to be of the order of 1 ppm, 100 ms and 1000 s(-1), respectively. Effects of molecular size, conformation and solute concentration were investigated. The exchange mechanism was characterised by Eyring activation enthalpies and entropies with values in the ranges 50-70 kJ mol(-1) and -10 to 60 J K(-1)mol(-1), respectively.  相似文献   

14.
1H- and 2H-NMR study of bovine serum albumin solutions   总被引:1,自引:0,他引:1  
Frozen, native and denatured bovine serum albumin solutions have been studied with a wide-band NMR pulse spectrometer. Both macromolecular and water protons spin-spin and spin-lattice relaxation times--t2m, t1m, t2w, t1w--have been measured between 170 and 360 K. In the native sample, the t2m process is the tumbling rate of the bovine serum albumin molecules. It gives to the spin-lattice relaxation an omega 0(-2) frequency dependence at room temperature in the studied frequency range, 6-90 MHz. An additional process contributes to t1m-1; it arises from internal backbone or segmental motions and provides a lower frequency behaviour. On denaturation, bovine serum albumin molecules lose their tumbling motion and form a rigid network, while internal backbone motions seem unaffected. Calorimetric Cp measurement confirms the occurrence of a phase transition upon denaturation. 1H and 2H spin-lattice relaxation times of water protons depend mainly on bound water mobility. 1H and 2H t2w depend also on the tertiary structure of bovine serum albumin and on its mobility, because of a fast exchange process between water and some protein protons (or deutons), while a cross-relaxation process between protein and water protons contributes to 1H t1w. Denaturation has no influence on bound water motional properties and bound water population.  相似文献   

15.
Deuterated 3-trimethylsilylpropionic acid binding to bovine serum albumin was used as a model system to examine the feasibility and limitations of using the deuterium off-resonance rotating frame spin-lattice relaxation experiment for the study of equilibrium ligand-binding behavior to proteins. The results of this study demonstrate that the rotational-diffusion behavior of the bound species can be monitored directly, i.e., the observed correlation time of the ligand in the presence of a protein is approximately equal to the correlation time of the ligand in the bound state, provided that the fraction of bound ligand is at least 0.20. The presence of local ligand motion and/or chemical exchange contributions to relaxation in the bound state was inferred from the observation that the correlation time of the bound ligand was somewhat smaller than the correlation time characterizing the overall tumbling of the protein. An approximate value for the fraction of bound ligand was obtained from off-resonance relaxation experiments when supplemental spin-lattice or transverse relaxation times were employed in the analysis. Incorporation of local motion effects for the bound species into the theoretical relaxation formalism enabled the evaluation of an order parameter and an effective correlation time, which in conjunction with a wobbling in a cone model, provided additional information about ligand motion in the bound state.  相似文献   

16.
Whole blood hematocrit was determined by an approach which depends on the diffusion of an inert probe, to which red blood cells are impermeable, from a small agarose gel into a stirred, much larger blood sample. Blood cells influence the diffusion rate of the probe by, on the average, physically blocking a fraction of the gel surface. The blocking effect increases with the hematocrit. Cyanocobalamin (B-12) was found to be a suitable probe because it did not penetrate, bind to, or lyse blood cells and was not bound by plasma solutes. The loss of B-12 from gels in contact with blood was monitored by determination of the absorbance change at 540 nm of gels which had been quickly rinsed. The visible spectrum of B-12 in agarose gels was identical to the spectrum in water. Beer's Law was obeyed in 1-mm thick agarose gels over a concentration range of 0.1-0.8 mM. Based on the results from 48 blood samples covering the hematocrit range 25-69, a least-squares line was generated with a slope, -3.46 X 10(-3) delta A/hematocrit unit, a Y intercept of 0.295, and a correlation coefficient of 0.971. The precision of the technique was +/- 9.7%. The assay was insensitive to mean corpuscular volume and sample volume as long as the latter was 50-fold larger than the gel volume. The diffusion coefficient for B-12 in 1% agarose gels was found to be 1.4 +/- 0.2 X 10(-6) cm2 sec-1.  相似文献   

17.
The nucleotide substrate sites of sheep kidney medulla (NA+ + K+)-ATPase are characterized using CrATP, a paramagnetic, substitution-inert substrate analogue probe. The paramagnetic effect of CrATP on 1/T1 of water protons of water protons is enhanced upon complexation with the enzyme. Titrations of the enzyme with CrATP in the presence of Na+ and K+ yielded characteristic enhancements for the binary enzyme-CrATP and ternary enzyme-Mg2+-CrATP complexes of 3.3 and 3.6 and dissociation constants for CrATP of 5 and 12 microM, respectively. Substitution of Li+ for K+ in these titrations did not substantially alter the titration behavior. From the frequency dependence of 1/T1, the correlation time, tau c, for the dipolar water proton-CrATP interaction is 2.7 x 10(-10) sec, indicating that tau c is dominated by tau s, the electron spin relaxation time of Cr3+. The paramagnetic effect of enzyme-bound Mn2+ on 1/T1 of water protons decreases upon the addition of CrATP. Titration of the binary enzyme-Mn2+ complex with CrATP decreases the characteristic enhancement due to Mn2+ from 6.6-8.0 to 1.5. The failure to observe free Mn2+ epr signals in solutions of the ATPase, Mn2+, and CrATP demonstrate that this decrease in epsilon Mn is due to cross-relaxation between Mn2+ and Cr3+ bound simultaneously to the enzyme, and not to displacement of Mn2+ from the enzyme by CrATP. The relaxation rate, 1/T1, of 7Li+ is increased upon addition of CrATP to solutions of the ATPase, indicating that the sites for Li+ and CrATP are close on the enzyme. A Cr3+-Li+ distance of 4.8 +/- 0.5 angstrom is calculated from that data.  相似文献   

18.
Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse interval (tauCPMG) as well as 1H NMR spectral measurements in a wide range of concentrations of bovine serum albumin (BSA) solutions. The anomalous relaxation behaviour of the water protons, similar to that observed in mammalian lenses, was found in the two most concentrated solutions (44% and 46%). The functional dependence of the spin-spin relaxation time vs. tauCPMG pulse interval and the values of the motional activation parameters obtained from the temperature dependencies of spin-lattice relaxation times suggest that the water molecule mobility is reduced in these systems. The slow exchange process on the T2 time scale is proposed to explain the obtained data. The proton spectral measurements support the hypothesis of a slow exchange mechanism in the highest concentrated solutions. From the analysis of the shape of the proton spectra the mean exchange times between bound and bulk water proton groups (tauex) have been estimated for the range of the highest concentrations (30%-46%). The obtained values are of the order of milliseconds assuring that the slow exchange condition is fulfilled in the most concentrated samples.  相似文献   

19.
An interaction of dipalmitoylphosphatidylcholine (PC) and phosphatidylserine (PS) with manganous ions has been investigated by measuring the effect of bound manganese upon the longitudinal relaxation rate, 1/T1, of the solvent water protons and evaluating the enhancement factor epsilon b. The observed enhancement values were used to determine the number of interacting sites per polar head group, n, and the values of association constants, KA, of manganese to PC and PS. Changes in epsilon b correlate with structural changes at the interacting site. By increasing the temperature one can see an abrupt decrease in epsilon b within the temperature interval from 40 to 50 degrees C indicating the thermal phase transition of PC as established by calorimetry, fluorescence and high-resolution NMR measurements. That an enhancement of 1/T1 of the solvent-water protons occurs at all is explained by assuming a restricted rotation of the Mn2+-aquo complex in the bound state. In addition we suppose that the rotation of the Mn2+-aquo complex is the mechanism which dominates the relaxation of the water protons in teh bulk solvent when phospholipids are present.  相似文献   

20.
The temperature and cell volume dependence of the NMR water proton line-width, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon deoxygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters are affected only slightly by a 10-20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the "bound" water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at -15 degrees C to 500 Hz at -36 degrees C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at -35 degrees C for measurements at 44.4 MHz and -50 degrees C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irrotationally bound water, is altered during the sickling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号