首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

2.
The gastric pathogen Helicobacter pylori is known to activate epithelial cell signaling pathways that regulate numerous inflammatory response genes. The aim of this study was to elucidate the pathway leading to extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in H. pylori-infected AGS gastric epithelial cells. We find that H. pylori, via activation of the epidermal growth factor (EGF) receptor activates the small GTP-binding protein Ras, which in turn, mediates ERK1/2 phosphorylation. cag+ strains of H. pylori are able to induce greater EGF receptor activation than cag- strains, and studies with isogenic mutants indicate that an intact type IV bacterial secretion system is required for this effect. Blockade of EGF receptor activation using tyrphostin AG1478 prevents H. pylori-mediated Ras activation, inhibits ERK1/2 phosphorylation, and substantially decreases interleukin-8 gene expression and protein production. Investigations into the mechanism of EGF receptor activation, using heparin, a metalloproteinase inhibitor and neutralizing antibodies reveal that H. pylori transactivates the EGF receptor via activation of the endogenous ligand heparin-binding EGF-like growth factor. Transactivation of gastric epithelial cell EGF receptors may be instrumental in regulating both proliferative and inflammatory responses induced by cag+ H. pylori infection.  相似文献   

3.
Shin J  Gu C  Kim J  Park S 《BMB reports》2008,41(6):479-484
In the present study, we demonstrate that ephrin-A5 is able to induce a transient increase of MAP kinase activity in PC12 cells. However, the effects of ephrin-A5 on the MAP kinase signaling pathway are about three-fold less than that of EGF. In addition, we demonstrate that EphA4 is the only Eph member expressed in PC12 cells, and that tyrosine phosphorylation induced by ephrin-A5 treatment is consistent with the magnitude and longevity of MAP kinase activation. Experiments using the Ras dominant negative mutant N17Ras reveal that Ras plays a pivotal role in ephrin-A5-induced MAP kinase activation in PC12 cells. Importantly, we found that the EphA4 receptor is rapidly internalized by endocytosis upon engagement of ephrin-A5, leading to a subsequent reduction in the MAP kinase activation. Together, these data suggest a novel regulatory mechanism of differential Ras-MAP kinase signaling kinetics exhibited by the forward signaling of EphA4 in PC12 cells.  相似文献   

4.
5.
Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.  相似文献   

6.
PEA-15 is a small, death effector-domain (DED)-containing protein that was recently demonstrated to inhibit tumor necrosis factor-alpha-induced apoptosis and to reverse the inhibition of integrin activation due to H-Ras. This led us to investigate the involvement of PEA-15 in Ras signaling. Surprisingly, PEA-15 activates the extracellular signal receptor-activated kinase (ERK) mitogen-activated protein kinase pathway in a Ras-dependent manner. PEA-15 expression in Chinese hamster ovary cells resulted in an increased mitogen-activated protein kinase kinase and ERK activity. Furthermore, PEA-15 expression leads to an increase in Ras guanosine 5'-triphosphate loading. PEA-15 bypasses the anchorage dependence of ERK activation. Finally, the effects of PEA-15 on integrin signaling are separate from those on ERK activation. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to activate ERK. The ability of PEA-15 to simultaneously inhibit apoptosis and potentiate Ras-to-Erk signaling may be of importance for oncogenic processes.  相似文献   

7.
The paradigm for activation of Ras and extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase by extracellular stimuli via tyrosine kinases, Shc, Grb2, and Sos does not encompass an obvious role for phosphoinositide (PI) 3-kinase, and yet inhibitors of this lipid kinase family have been shown to block the ERK/MAP kinase signalling pathway under certain circumstances. Here we show that in COS cells activation of both endogenous ERK2 and Ras by low, but not high, concentrations of epidermal growth factor (EGF) is suppressed by PI 3-kinase inhibitors; since Ras activation is less susceptible than ERK2 activation, PI 3-kinase-sensitive events may occur both upstream of Ras and between Ras and ERK2. However, strong elevation of PI 3-kinase lipid product levels by expression of membrane-targeted p110alpha is by itself never sufficient to activate Ras or ERK2. PI 3-kinase inhibition does not affect EGF-induced receptor autophosphorylation or adapter protein phosphorylation or complex formation. The concentrations of EGF for which PI 3-kinase inhibitors block Ras activation induce formation of Shc-Grb2 complexes but not detectable EGF receptor phosphorylation and do not activate PI 3-kinase. The activation of Ras by low, but mitogenic, concentrations of EGF is therefore dependent on basal, rather than stimulated, PI 3-kinase activity; the inhibitory effects of LY294002 and wortmannin are due to their ability to reduce the activity of PI 3-kinase to below the level in a quiescent cell and reflect a permissive rather than an upstream regulatory role for PI 3-kinase in Ras activation in this system.  相似文献   

8.
Our previous studies demonstrated that taurine inhibits osteoblastic differentiation of vascular smooth muscular cells (VSMCs) via the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, but the underlying mechanism is not elucidated. The tyrosine kinase receptor Axl and its ligand growth arrest-specific protein 6 (Gas6) are expressed in VSMCs. Axl/Gas6 signaling system is known to inhibit VSMCs calcification. We herein showed that taurine partially restored Axl and Gas6 expression in β-glycerophosphate (β-GP)-induced VSMC calcification model. Taurine also induced activation of ERK, but not other two MAPKs including c-jun N-terminal Kinase (JNK) and p38 in VSMCs. Either knockdown of the taurine transporter (TAUT) or treatment with the ERK-specific inhibitor PD98059 blocked the activation of ERK by taurine and abolished taurine-induced Axl/Gas6 expression and calcium deposition reduction in β-GP-induced VSMC calcification model. These results demonstrate for the first time that taurine stimulates expression of Axl and Gas6 via TAUT/ERK signaling pathway in β-GP-induced VSMC calcification model.  相似文献   

9.
Cholecystokinin (CCK) and related peptides are potent growth factors in the gastrointestinal tract and may be important for human cancer. CCK exerts its growth modulatory effects through G(q)-coupled receptors (CCK(A) and CCK(B)) and activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated the different mechanisms participating in CCK-induced activation of ERK1/2 in pancreatic AR42J cells expressing both CCK(A) and CCK(B). CCK activated ERK1/2 and Raf-1 to a similar extent as epidermal growth factor (EGF). Inhibition of EGF receptor (EGFR) tyrosine kinase or expression of dominant-negative Ras reduced CCK-induced ERK1/2 activation, indicating participation of the EGFR and Ras in CCK-induced ERK1/2 activation. However, compared with EGF, CCK caused only small increases in tyrosine phosphorylation of the EGFR and Shc, Shc-Grb2 complex formation, and Ras activation. Signal amplification between Ras and Raf in a CCK-induced ERK cascade appears to be mediated by activation of protein kinase Cepsilon (PKCepsilon), because 1) down-modulation of phorbol ester-sensitive PKCs inhibited CCK-induced activation of Ras, Raf, and ERK1/2 without influencing Shc-Grb2 complex formation; 2) PKCepsilon, but not PKCalpha or PKCdelta, was detectable in Raf-1 immunoprecipitates, although CCK activated all three PKC isoenzymes. In addition, the present study provides evidence that the Src family tyrosine kinase Yes is activated by CCK and mediates CCK-induced tyrosine phosphorylation of Shc. Furthermore, we show that CCK-induced activation of the EGFR and Yes is achieved through the CCK(B) receptor. Together, our data show that different signals emanating from the CCK receptors mediate ERK1/2 activation; activation of Yes and the EGFR mediate Shc-Grb2 recruitment, and activation of PKC, most likely PKCepsilon, augments CCK-stimulated ERK1/2 activation at the Ras/Raf level.  相似文献   

10.
In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line. Herein, we show that the activation of the pro-apoptotic protease caspase-3 upon IL-3 removal is suppressed by expression of activated Ras, which eventually prevents cell death. For caspase-3 suppression, the Raf/extracellular signal-regulated kinase (ERK)- or phosphatidylinositol 3-kinase (PI3-K)/Akt-mediated signaling pathway downstream of Ras was required. However, inhibition of both pathways did not block activated Ras-dependent suppression of cell death-associated phenotypes, such as nuclear DNA fragmentation. Thus, a pathway that is independent of both Raf/ERK and PI3-K/Akt pathways may function downstream of Ras, preventing activated caspase-3-initiated apoptotic processes. Conditional activation of c-Raf-1 also suppressed caspase-3 activation and subsequent cell death without affecting Akt activity, providing further evidence for a PI3-K/Akt-independent mechanism.  相似文献   

11.
PC12 cells exhibit precise temporal control of growth factor signaling in which stimulation with epidermal growth factor (EGF) leads to transient extracellular signal-regulated kinase (ERK) activity and cell proliferation, whereas nerve growth factor (NGF) stimulation leads to sustained ERK activity and differentiation. While cyclic AMP (cAMP)-mediated signaling has been shown to be important in conferring the sustained ERK activity achieved by NGF, little is known about the regulation of cAMP and cAMP-dependent protein kinase (PKA) in these cells. Using fluorescence resonance energy transfer (FRET)-based biosensors localized to discrete subcellular locations, we showed that both NGF and EGF potently activate PKA at the plasma membrane, although they generate temporally distinct activity patterns. We further show that both stimuli fail to induce cytosolic PKA activity and identify phosphodiesterase 3 (PDE3) as a critical regulator in maintaining this spatial compartmentalization. Importantly, inhibition of PDE3, and thus perturbation of the spatiotemporal regulation of PKA activity, dramatically increases the duration of EGF-stimulated nuclear ERK activity in a PKA-dependent manner. Together, these findings identify EGF and NGF as potent activators of PKA activity specifically at the plasma membrane and reveal a novel regulatory mechanism contributing to the growth factor signaling specificity achieved by NGF and EGF in PC12 cells.  相似文献   

12.
Activation of p70 S6 kinase (p70(S6K)) by growth factors requires multiple signal inputs involving phosphoinositide 3-kinase (PI3K), its effector Akt, and an unidentified kinase that phosphorylates Ser/Thr residues (Ser(411), Ser(418), Ser(424), and Thr(421)) clustered at its autoinhibitory domain. However, the mechanism by which G protein-coupled receptors activate p70(S6K) remains largely uncertain. By using vascular smooth muscle cells in which we have demonstrated Ras/extracellular signal-regulated kinase (ERK) activation through Ca(2+)-dependent, epidermal growth factor (EGF) receptor transactivation by G(q)-coupled angiotensin II (Ang II) receptor, we present a unique cross-talk required for Ser(411) phosphorylation of p70(S6K) by Ang II. Both p70(S6K) Ser(411) and Akt Ser(473) phosphorylation by Ang II appear to involve EGF receptor transactivation and were inhibited by dominant-negative Ras, whereas the phosphorylation of p70(S6K) and ERK but not Akt was sensitive to the MEK inhibitor. By contrast, the phosphorylation of p70(S6K) and Akt but not ERK was sensitive to PI3K inhibitors. Similar inhibitory pattern on these phosphorylation sites by EGF but not insulin was observed. Taken together with the inhibition of Ang II-induced p70(S6K) activation by dominant-negative Ras and the MEK inhibitor, we conclude that Ang II-initiated activation of p70(S6K) requires both ERK cascade and PI3K/Akt cascade that bifurcate at the point of EGF receptor-dependent Ras activation.  相似文献   

13.
Increased activation of the epidermal growth factor receptor (EGFR) is frequently observed in tumors, and inhibition of the signaling pathways originated in the EGFR normally renders tumor cells more sensitive to apoptotic stimuli. However, we show that inhibition of EGFR signaling in non-transformed breast epithelial cells by EGF deprivation or gefitinib, an inhibitor of EGFR tyrosine kinase, causes the upregulation of the long isoform of caspase-8 inhibitor FLICE-inhibitory protein (FLIPL) and makes these cells more resistant to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We demonstrate that the extracellular signal-regulated kinase (ERK)1/2 pathway plays a pivotal role in the regulation of FLIPL levels and sensitivity to TRAIL-induced apoptosis by EGF. Upregulation of FLIPL upon EGF deprivation correlates with a decrease in c-Myc levels and c-Myc knockdown by siRNA induces FLIPL expression. FLIPL upregulation and resistance to TRAIL in EGF-deprived cells are reversed following activation of an estrogen activatable form of c-Myc (c-Myc-ER). Finally, constitutive activation of the ERK1/2 pathway in HER2/ERBB2-transformed cells prevents EGF deprivation-induced FLIPL upregulation and TRAIL resistance. Collectively, our results suggest that a regulated ERK1/2 pathway is crucial to control FLIPL levels and sensitivity to TRAIL in non-transformed cells, and this mechanism may explain the increased sensitivity of tumor cells to TRAIL, in which the ERK1/2 pathway is frequently deregulated.  相似文献   

14.
Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor.  相似文献   

15.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K.  相似文献   

16.
Pan MR  Chang HC  Hung WC 《Cellular signalling》2008,20(6):1134-1141
Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit cancer cell growth, induce apoptosis and decrease tumor metastasis. We have previously reported that a NSAID NS398 repressed the expression of matrix metalloproteinase-2 (MMP-2) via inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. In this study, we investigate the underlying mechanism of this inhibition. In vitro kinase assay indicated that NS398 could not directly inhibit c-Raf, MEK1 and ERK enzymatic activity. We found that NS398 increased the inhibitory phosphorylation of Ser259 in c-Raf, attenuated membrane recruitment of c-Raf and inhibited Ras/c-Raf interaction to attenuate activation of this kinase. This is a general effect for NSAIDs because sulindac sulfide, aspirin and indomethacin also inhibited the binding of c-Raf to Ras. Immunofluorescent staining verified that NS398 reduced the serum-induced membrane recruitment of c-Raf in cells. However, overexpression of constitutively active c-Raf only partly reversed NS398-induced inhibition of MMP-2 expression. Interestingly, we found that NS398 up-regulated the expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) and MKP-3. Block of MKP activity by sodium orthovanadate also partly counteracted the inhibitory effect of NS398. Overexpression of constitutively active c-Raf and treatment of sodium orthovanadate together completely reversed the inhibition of MMP-2 by NS398. Taken together, we conclude that NS398 and other NSAIDs act via inhibition of Ras/c-Raf interaction and up-regulation of MKPs to suppress the ERK-mediated signaling.  相似文献   

17.
ACK1 (activated Cdc42-associated kinase 1), a cytoplsmic tyrosine kinase, is implicated in metastatic behavior, cell spreading and migration, and epidermal growth factor receptor (EGFR) signaling. The function of ACK1 in the regulation of receptor tyrosine kinases requires a C-terminal region that demonstrates a significant homology to the EGFR binding domain of MIG6. In this study, we have identified additional receptor tyrosine kinases, including Axl, leukocyte tyrosine kinase, and anaplastic lymphoma kinase, that can bind to the ACK1/MIG6 homology region. Unlike the interaction between MIG6 and EGFR, our data suggest that these receptor tyrosine kinases require the adaptor protein Grb2 for efficient binding, which interacts with highly conserved proline-rich regions that are conserved between ACK1 and MIG6. We have focused on Axl and compared how ACK1/Axl differs from the ACK1/EGFR axis by investigating effects of knockdown of endogenous ACK1. Although EGFR activation promotes ACK1 turnover, Axl activation by GAS6 does not; interestingly, the reciprocal down-regulation of GAS6-stimulated Axl is blocked by removing ACK1. Thus, ACK1 functions in part to control Axl receptor levels. Silencing of ACK1 also leads to diminished ruffling and migration in DU145 and COS7 cells upon GAS6-Axl signaling. The ability of ACK1 to modulate Axl and perhaps anaplastic lymphoma kinase (altered in anaplastic large cell lymphomas) might explain why ACK1 can promote metastatic and transformed behavior in a number of cancers.  相似文献   

18.
Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones.  相似文献   

19.
Ultraviolet (UV) irradiation stimulates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) superfamily and implicated in stress-induced apoptosis. UV also induces the activation of another MAPK member, extracellular signal-regulated kinase (ERK), which is typically involved in a growth-signaling cascade. However, the UV-induced signaling pathway leading to ERK activation, together with the physiological role, has remained unknown. Here we examined the molecular mechanism and physiological function of UV-induced ERK activation in human epidermoid carcinoma A431 cells that retain a high number of epidermal growth factor (EGF) receptors. UV-induced ERK activation was accompanied with the Tyr phosphorylation of EGF receptors, and both responses were completely abolished in the presence of a selective EGF receptor inhibitor (AG1478) or the Src inhibitor PP2 and by the expression of a kinase-dead Src mutant. On the other hand, SAPK/JNK activation by UV was partially inhibited by these inhibitors. UV stimulated Src activity in a manner similar to the ERK activation, but the Src activation was insensitive to AG1478. UV-induced cell apoptosis measured by DNA fragmentation and caspase 3 activation was enhanced by AG1478 and an ERK kinase inhibitor (U0126) but inhibited by EGF receptor stimulation by the agonist. These results indicate that UV-induced ERK activation, which provides a survival signal against stress-induced apoptosis, is mediated through Src-dependent Tyr phosphorylation of EGF receptors.  相似文献   

20.
The extracellular signal-regulated kinases 1/2 (ERK1/2) are activated in cardiomyocytes by Gq protein-coupled receptors and are associated with induction of hypertrophy. Here, we demonstrate that, in primary cardiomyocyte cultures, ERK1/2 were also significantly activated by platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or fibroblast growth factor (FGF), but insulin, insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) had relatively minor effects. PDGF, EGF or FGF increased cardiomyocyte size via ERK1/2, whereas insulin, IGF-1 or NGF had no effect suggesting minimum thresholds/durations of ERK1/2 signaling are required for the morphological changes associated with hypertrophy. Peptide growth factors are widely accepted to activate phospholipase C gamma1 (PLCgamma1) and protein kinase C (PKC). In cardiomyocytes, only PDGF stimulated tyrosine phosphorylation of PLCgamma1 and nPKCdelta. Furthermore, activation of ERK1/2 by PDGF, but not EGF, required PKC activity. In contrast, EGF substantially increased Ras.GTP with rapid activation of c-Raf, whereas stimulation of Ras.GTP loading by PDGF was minimal and activation of c-Raf was delayed. Our data provide clear evidence for differential coupling of PDGF and EGF receptors to the ERK1/2 cascade, and indicate that a minimum threshold/duration of ERK1/2 signaling is required for the development of cardiomyocyte hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号