首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A (poly)histidine tag was fused to either the N- or the C-terminus of L-lactate dehydrogenase (LDH) of Bacillus stearothermophilus to facilitate purification and immobilization of these enzymes. The C-terminally tagged enzyme displayed lower activity compared both to the wild-type and to the N-terminally tagged variant. The reason for this loss of activity was investigated by affinity chromatography of the enzymes on a 5'-AMP-Sepharose resin and by size-exclusion chromatography. The C-terminally tagged enzyme could be separated into an inactive, unbound fraction and an active, bound fraction. Further differences between the C-terminally tagged enzyme and the N-terminally tagged and wild-type LDH were observed on size-exclusion chromatography of the three enzymes. These data suggest that the introduction of a "his-tag" at the C-terminus may induce misfolding of the LDH and serve as a warning that the introduction of a (poly)histidine tag can produce unforseen changes in a protein.  相似文献   

2.
The gene of the four disulfide-bridged Centruroides suffusus suffusus toxin II was cloned into the expression vector pQE30 containing a 6His-tag and a FXa proteolytic cleavage region. This recombinant vector was transfected into Escherichia coli BL21 cells and expressed under induction with isopropyl thiogalactoside (IPTG). The level of expression was 24.6 mg/l of culture medium, and the His tagged recombinant toxin (HisrCssII) was found exclusively in inclusion bodies. After solubilization the HisrCssII peptide was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisrCssII product obtained from the affinity chromatography step showed several peptide fractions having the same molecular mass of 9392.6 Da, indicating that HisrCssII was oxidized forming several distinct disulfide bridge arrangements. The multiple forms of HisrCssII after reduction eluted from the column as a single protein component of 9400.6 Da. Similarly, an in vitro folding of the reduced HisrCssII generated a single oxidized component of HisrCssII, which was cleaved by the proteolytic enzyme FXa to the recombinant CssII (rCssII). The molecular mass of rCssII was 7538.6 Da as expected. Since native CssII (nCssII) is amidated at the C-terminal residue whereas the rCssII is heterologously expressed in the format of free carboxyl end, there is a difference of 1 Da, when comparing both peptides (native versus heterologously expressed). Nevertheless, they show similar toxicity when injected intracranially into mice, and both nCssII and rCssII show the typical electrophysiological properties of beta-toxins in Nav1.6 channels, which is for the first time demonstrated here. Binding and displacement experiments conducted with radiolabelled CssII confirms the electrophysiological results. Several problems associated with the heterologously expressed toxins containing four disulfide bridges are discussed.  相似文献   

3.
Studies of the response of phosphoenolpyruvate carboxylase from C3 (wheat [Triticum aestivum L.]), C4 (maize [Zea mays L.]), and Crassulacean acid metabolism (CAM) (Crassula) leaves to the activator glucose-6-phosphate as a function of pH showed that the binding of the activator and the response path to activation were essentially identical for all three enzymes. The level of affinity for the activator differed, with the CAM enzyme having the highest affinity and the maize enzyme the lowest. The observed pK values suggest that histidine and cysteine groups may be involved in activation by glucose-6-phosphate. The presence of glucose-6-phosphate protected the enzyme against inactivation of the activation response by p-chloromercuribenzoate. The maximal activation response to glucose-6-phosphate showed differences among the three enzymes including different pH optima and different pH profiles. Here the maize leaf enzyme showed a potential response about twice as great as that of the C3 and CAM enzymes.  相似文献   

4.
《Process Biochemistry》2010,45(6):821-828
Maltogenic amylases (MAases), a subclass of cyclodextrin (CD)-hydrolyzing enzymes, belong to glycoside hydrolase family 13. A gene corresponding to MA in Geobacillus caldoxylosilyticus TK4 (GcaTK4MA) was cloned into pET28a(+) vector and expressed in Escherichia coli with 6xHis-tag at the N-terminus. Herein, we report on the biochemical properties of a new thermo- and pH-stable MA. GcaTK4MA has similar properties those of other MAases in terms of the primary structure, preference for CD over starch and having an extra domain at its N- and C-terminals. The recombinant protein was purified efficiently by using one-step nickel affinity chromatography. The purified enzyme exhibited optimal activity for β-CD hydrolysis at 50 °C and pH 7.0. When the enzyme was separately incubated at 4 °C and 50 °C in the buffer solutions (pH 3.0–9.0) up to 7 days, it was seen that the enzyme had the higher stability at 50 °C than 4 °C. The enzyme retained about 80% of its original activity when it was incubated at 50 °C for 7 days. The enzyme activity was significantly inhibited by SDS and EDTA at the final concentration of 1%. These results suggest that this is the first reported MA having an extremely pH- and thermal stabilities.  相似文献   

5.
The codA gene of Corynebacterium glutamicum PCM 1945 coding for a creatinine deiminase (CDI) (EC 3.5.4.21) has been amplified and cloned. The recombinant strain of Escherichia coli that overproduces the (His)6‐tagged inactive CDI of C. glutamicum as inclusion bodies has been constructed. After solubilization of inclusion bodies in the presence of 0.3% N‐lauroylsarcosine, the enzyme was renaturated and purified by a single‐step procedure using metal‐affinity chromatography. The yield of the (His)6‐tagged CDI is ~30 mg from 1 L culture. The purified enzyme is sufficiently stable under the conditions designed and possesses an activity of 10–20 U/mg. The main characteristics of the tagged enzyme remained similar to that of the natural enzyme.  相似文献   

6.
Glutaredoxins (Grx) play an important role in reduction of protein glutathione mixed disulphides. An IbGrx cDNA (561 bp, EF362614 ) encoding a putative dithiol Grx was cloned from sweet potato (Ipomoea batatas [L.] Lam). The deduced amino acid sequence is conserved among the reported dithiol Grx, having a CGYC dithiol motif at the active site. A 3‐D structural model was created based on the known crystal structure of a poplar Grx (GrxC1). To characterise the IbGrx protein, the coding region was subcloned into an expression vector and transformed into Escherichia coli. The recombinant His6‐tagged IbGrx was expressed and purified by metal affinity chromatography. The purified enzyme showed a monomeric band, as demonstrated with 15% SDS‐PAGE. The Michaelis constant (KM) for ß‐hydroxyethyl disulphide (HED) was 0.50 ± 0.08 Mm . The enzyme retained 60% activity at 80 °C for 16 min. The enzyme was active over a broad pH range from 6.0 to 11.0, and in the presence of imidazole up to 0.4 M . The enzyme was susceptible to protease.  相似文献   

7.
The EE subunit of horse liver alcohol dehydrogenase (HLADH-EE) has been subcloned in pRSETb vector to generate a fusion His-tag protein. The migration from a multistep purification protocol for this well-known enzyme to a single-step has been successfully achieved. Several adjustments to the traditional purification procedure for His-tag proteins have been made to retain protein activity. A full characterization of the fusion enzyme has been carried out and compared with the native one. The K m for EtOH, NAD and NADH in the His-tag version of HLADH are in line with the ones reported in literature for the native enzyme. A shift in optimal pH activity is also observed. The enzyme retains the same stability and quaternary structure as the wild type and can therefore be easily used instead of the native HLADH for biotechnological applications.  相似文献   

8.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

9.
A mutant strain, KLAM59, of Pseudomonas aeruginosa has been isolated that synthesizes a catalytically inactive amidase. The mutation in the amidase gene has been identified (Glu59Val) by direct sequencing of PCR-amplified mutant gene and confirmed by sequencing the cloned PCR-amplified gene. The wild-type and altered amidase genes were cloned into an expression vector and both enzymes were purified by affinity chromatography on epoxy-activated Sepharose 6B-acetamide followed by gel filtration chromatography. The mutant enzyme was catalytically inactive, and it was detected in column fractions by monoclonal antibodies previously raised against the wild-type enzyme using an ELISA sandwich method. The recombinant wild-type and mutant enzymes were purified with a final recovery of enzyme in the range of 70–80%. The wild-type and mutant enzymes behaved differently on the affinity column as shown by their elution profiles. The molecular weights of the purified wild-type and mutant amidases were found to be 210,000 and 78,000 Dalton, respectively, by gel filtration chromatography. On the other hand, the mutant enzyme ran as a single protein band on SDS-PAGE and native PAGE with a M r of 38,000 and 78,000 Dalton, respectively. These data suggest that the substitution Glu59Val was responsible for the dimeric structure of the mutant enzyme as opposed to the hexameric form of the wild-type enzyme. Therefore, the Glu59 seems to be a critical residue in the maintenance of the native quaternary structure of amidase.  相似文献   

10.
Extracellular d-glucosyltransferases (GTase) and d-fructosyltransferases (FTase) were isolated from Streptococcus mutans IB (serotype c), B14 (e), and OMZ175 (f) by chromatofocusing, followed by hydroxyapatite column chromatography. The GTases isolated from serotypes c, e, and f are basic proteins (pI 7.4). The serotype c and e enzymes have two protein components having Mr 173 000 and 158 000 and the enzyme of the serotype f one component having Mr 156 000. The GTases of all the serotypes showed a Km value for sucrose of 10–14mm and an optimum pH 5.5–6.0 for enzyme activity, and their activities were enhanced by the presence of primer Dextran T10. The α-d-glucans synthesized by the purified GTases are water soluble and primarily consist of (1→6)-α-d-glucosidic linkage (41–66 mol/100 mol) and α-d-(1→3,6)-branch linkage (6–20 mol/100 mol), but significant proportions of α-d-(1→3), α-d-(1→4), and α-d-(1→3,4) linkages (11, 6, and 14 mol/100 mol, respectively) were detected in the serotype c α-d-glucan. The isolated FTases of the serotypes c, e, and f are acidic enzymes (pI 4.6) and consist of two components having Mr 84 000 and 76 000 for the serotype c enzyme, and 106 000 and 84 000 for the serotypes e and f enzymes, respectively. The Km value for sucrose was 6, 10, and 17mm for the serotypes c, e, and f enzymes, respectively, and the optimum pH of enzymic activity 5.5–6.0. Reactivity with Concanavalin A, susceptibility to acid hydrolysis, and paper chromatography of the hydrolyzates suggested that the water-soluble β-d-fructans synthesized by the purified FTases were of the inulin-type and had chemical structures somewhat different among the serotypes.  相似文献   

11.
Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)6 tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.  相似文献   

12.
Streptococcus faecalis (ATCC 8043) was shown to have a purine phosphoribosyltransferase specific for xanthine. This enzyme was separated from interfering activities by heat treatment, ammonium sulfate fractionation, hydroxylapatite chromatography, and affinity chromatography. The xanthine phosphoribosyltransfer activity of this preparation was stable between pH 5.6 and 10, had a pH optimum between pH 7.4 and 8.8, and had a particle weight of 42,000 as determined by G-100 Sephadex chromatography. An initial velocity analysis when plotted in double-reciprocal form resulted in a family of parallel lines which when extrapolated to infinite concentration gave Km values for xanthine and PP-ribose-P of 20 and 53 μm, respectively. Inhibition studies with 42 purine and purine analogs indicated that oxo groups at positions 2 and 6 of the purine ring were required for optimal binding. The substitution of thio for oxo reduced binding to the enzyme ca. 20-fold. In contrast to its rigid specificity with respect to the 2,6-dioxo substituents, the enzyme bound a variety of 4,5-condensed pyrimidine systems containing a nitrogen at the position corresponding to the N-7 of xanthine. At concentrations of 1 mm, hypoxanthine, adenine, and 4,6-dihydroxypyrazolo[3,4-d]pyrimidine were converted to their corresponding ribonucleotides at rates approximately 0.1% of the rate for xanthine. Guanine was not detected as a substrate (rate <0.007% that of xanthine). The enzyme was inhibited by the ribonucleoside mono-, di-, and triphosphates of xanthine and guanine but not by those of adenine.  相似文献   

13.
The simultaneous isolation of three enzymes from the southern copperhead snake venom (Agkistrodon contortrix contortrix; ACC) is described. The first step is a chromatography of crude venom on a Mono S cation-exchange column at pH 6.5. A fibrin clot promoting enzyme (fiprozyme) that preferentially releases fibrinopeptide B from fibrinogen is isolated from the fraction not binding to the Mono S by a further three-step process. The procedure involves affinity chromatography on Blue Sepharose, gel chromatography on Sephacryl S-200 and metal–chelate chromatography on Chelating Sepharose. Protein C activator and phospholipase coelute from the Mono S column. They are separated by a gel chromatography on Sephacryl S-200. After this step two enzymes are obtained: a highly purified protein C activator applicable in methods for determination of functional level of protein C (a plasma regulator of hemostasis) and an electrophoretically pure enzyme with the activity of phospholipase A2.  相似文献   

14.
Heparinase and heparitinase were separated from an extract of Flavobacterium heparinum, induced with heparin by using column chromatography on hydroxylapatite. As the heparinase preparation contained chondroitinases B and C, chondroitinase B was removed by rechromatography on a hydroxylapatite column. Chondroitinase C was then eliminated by column chromatography on O-phosphono(“phospho”)-cellulose. The heparinase preparation thus obtained was free from sulfoamidase for 2-deoxy-2-sulfoamino-D-glucose (GlcN-2S), sulfatase for 2-amino-2-deoxy-6-O-sulfo D-glucose (GlcN-6S), as well as (δ4,5glycosiduronase for the unsaturated disaccharides obtained from heparin. The remaining sulfatase for 4-deoxy-α-L-thero-hex-4-enopyranosyluronic acid 2-sulfate (δUA-2S) in the heparinase preparation was removed by affinity chromatography with dermatan sulfate-bound AH-Sepharose 4B coated with dermatan sulfate. The heparitinase preparation separated by column chromatography on hydroxyla patite was purified by affinity chromatography with heparin-bound AH-Sepharose 4B coated with heparin. Sulfatase for 2-amino-2-deoxy-6-O-sulfo-D-glucose (GlcN-6S) and δ4,5glycosiduronase for the unsaturated disaccharides obtained from heparin were removed by this chromatography. Sulfatase for 4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid 2-sulfate (δUA-2S) remaining in the heparitinase preparation was finally removed by column chromatography on hydroxylapatite. The recoveries of the purified preparations of heparinase and heparitinase were estimated to be 39 and 50%, respectively, from the crude enzyme fractions obtained by the first column chromatography on hydroxyl- patite. The purified heparinase and heparitinase were free from all enzymes that could degrade the sulfated unsaturated disaccharides produced from heparin with heparinase.  相似文献   

15.
Acetate kinase catalyzes the reversible magnesium-dependent phosphoryl transfer from ATP to acetate to form acetyl phosphate and ADP. Here, we report functional and some structural properties of cold-adapted psychrotrophic enzyme; acetate kinase with those from mesophilic counterpart in Escherichia coli K-12. Recombinant acetate kinase from Shewanella sp. AS-11 (SAK) and E. coli K-12 (EAK) were purified to homogeneity following affinity chromatography and followed by Super Q column chromatography as reported before [44]. Both purified enzymes are shared some of the common properties such as (similar molecular mass, amino acid sequence and similar optimum pH), but characterized shift in the apparent optimum temperature of specific activity to lower temperature as well as by a lower thermal stability compared with EAK. The functional comparisons reveal that SAK is a cold adapted enzyme, having a higher affinity to acetate than EAK. In the acetyl phosphate and ADP-forming direction, the catalytic efficiency (k cat/K m) for acetate was 8.0 times higher for SAK than EAK at 10 °C. The activity ratio of SAK to EAK was increased with decreasing temperature in both of the forward and backward reactions. Furthermore, the activation energy, enthalpy and entropy in both reaction directions that catalyzed by SAK were lower than those catalyzed by EAK. The model structure of SAK showed the significantly reduced numbers of salt bridges and cation-pi interactions as compared with EAK. These results suggest that weakening of intramolecular electrostatic interactions of SAK is involved in a more flexible structure which is likely to be responsible for its cold adaptation.  相似文献   

16.
A facile two-step procedure was employed for simultaneous purification of glucose-6-phosphate dehydrogenase and malic enzyme from mouse (strain DBA2J) and Drosophila melanogaster. This involved the use of an 8-(6-aminohexyl)-amino-2′,5′-ADP-Sepharsoe affinity column chromatography followed by DEAE-Sephadex chromatography. The native and subunit molecular weights of these two homogeneous enzymes were determined by gel-filtration chromatography and SDS-polyacrylamide gel electrophoresis. From this study, it was concluded that the two enzymes are tetrameric and have native molecular weights between 200,000 and 280,000 in both species.  相似文献   

17.
Hexahistidine tag (His-tag) is the most widely used tag for affinity purification of recombinant proteins for their structural and functional analysis. In the present study, single chain Fv (scFv) constructs were engineered form the monoclonal antibody (MAb) CC49 which is among the most extensively studied MAb for cancer therapy. For achieving efficient purification of scFvs by immobilized metal-ion affinity chromatography (IMAC), a His-tag was placed either at the C-terminal (scFv-His6) or N-terminal (His6-scFv) of the coding sequence. Solid-phase radioimmunoassay for scFv-His6 showed only 20-25% binding whereas both His6-scFv and scFv (no His-tag) showed 60-65% binding. Surface plasmon resonance studies by BIAcore revealed the binding affinity constant (KA) for His6-scFv and scFv as 1.19 x 10(6) M(-1) and 3.27 x 10(6) M(-1), respectively. No K(A) value could be calculated for scFv-His6 due to poor binding kinetics (kon and koff). Comparative homology modeling for scFv and scFv-His6 showed that the C-terminal position of the His-tag partially covered the antigen-binding site of the protein. The study demonstrates that the C-terminal position of His-tag on the CC49 scFv adversely affects the binding properties of the construct. The results emphasize the importance of functional characterization of recombinant proteins expressed with purification tags.  相似文献   

18.
A phosphoketolase (pk) gene from the fungus Termitomyces clypeatus (TC) was cloned and partially characterized. Oligonucleotide primers specific for the phosphoketolase gene (pk) were designed from the regions of homologies found in the primary structure of the enzyme from other fungal sources related to TC, using multiple sequence alignment technique. The cDNA of partial lengths were amplified, cloned and sequenced in three parts by 3′ and 5′ RACE and RT-PCR using these oligonucleotide primers. The full length ds cDNA was constructed next by joining these three partial cDNA sequences having appropriate overlapping regions using Overlap Extension PCR technique. The constructed full length cDNA exhibited an open reading frame of 2487 bases and 5′ and 3′ UTRs. The deduced amino acid sequence, which is of 828 amino acids, when analyzed with NCBI BLAST, showed high similarities with the phosphoketolase enzyme (Pk) superfamily with expected domains. The part of the TC genomic DNA comprising of the pk gene was also amplified, cloned and sequenced and was found to contain two introns of 68 and 74 bases that interrupt the pk reading frame. The coding region of pk cDNA was subcloned in pKM260 expression vector in correct frame and the protein was expressed in Escherichia coli BL21 (DE3) transformed with this recombinant expression plasmid. The recombinant protein purified by His-tag affinity chromatography indicated the presence of a protein of the expected size. In vivo expression studies of the gene in presence of different carbon sources indicated synthesis of Pk specific mRNA, as expected. Phylogenetic studies revealed a common ancestry of the fungal and bacterial Pk. The TC is known to secrete several industrially important enzymes involved in carbohydrate metabolism. However, the presence of Pk, a key enzyme in pentose metabolism, has not been demonstrated conclusively in this organism. Cloning, sequencing and expression study of this gene establishes the functioning of this gene in T. clypeatus. The Pk from TC is a new source for commercial exploitation.  相似文献   

19.
Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having a COOH-terminal orotate phosphoribosyltransferase (OPRT) and an NH2-terminal orotidine 5′-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. Here, we produced gene fusions of Plasmodium falciparum OMPDC-OPRT and expressed the bifunctional protein in Escherichia coli. The enzyme was purified to homogeneity using affinity and anion-exchange chromatography, exhibited enzymatic activities and functioned as a dimer. The activities, although unstable, were stabilized by its substrate and product during purification and long-term storage. Furthermore, the enzyme expressed a perfect catalytic efficiency (kcat/Km). The kcat was selectively enhanced up to three orders of magnitude, while the Km was not much affected and remained at low μM levels when compared to the monofunctional enzymes. The fusion of the two enzymes, creating a “super-enzyme” with perfect catalytic power and more flexibility, reflects cryptic relationship of enzymatic reactivities and metabolic functions on molecular evolution.  相似文献   

20.
For Podospora anserina, several studies of cellulolytic enzymes have been established, but characteristics of amylolytic enzymes are not well understood. When P. anserina grew in starch as carbon source, it accumulated glucose, nigerose, and maltose in the culture supernatant. At the same time, the fungus secreted α-glucosidase (PAG). PAG was purified from the culture supernatant, and was found to convert soluble starch to nigerose and maltose. The recombinant enzyme with C-terminal His-tag (rPAG) was produced with Pichia pastoris. Most rPAG produced under standard conditions lost its affinity for nickel-chelating resin, but the affinity was improved by the use of a buffered medium (pH 8.0) supplemented with casamino acid and a reduction of the cultivation time. rPAG suffered limited proteolysis at the same site as the original PAG. A site-directed mutagenesis study indicated that proteolysis had no effect on enzyme characteristics. A kinetic study indicated that the PAG possessed significant transglycosylation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号