首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Little work has been done to understand the folding profiles of multi-domain proteins at alkaline conditions. We have found the formation of a molten globule-like state in bovine serum albumin at pH 11.2 with the help of spectroscopic techniques; like far and near ultra-violet circular dichroism, intrinsic and extrinsic fluorescence spectroscopy. Interestingly, this state has features similar to the acid-denatured state of human serum albumin at pH 2.0 reported by Muzammil et al. (Eur J Biochem 266:26–32, 1999). This state has also shown significant increase in 8-anilino-1-naphthalene-sulfonate (ANS) binding in compare to the native state. At pH 13.0, the protein seems to acquire a state very close to 6 M guanidinium hydrochloride (GuHCl) denatured one. But, reversibility study shows it can regain nearly 40% of its native secondary structure. On the contrary, tertiary contacts have disrupted irreversibly. It seems, withdrawal of electrostatic repulsion leave room for local interactions, but disrupted tertiary contacts fail to regain their original states.  相似文献   

2.
The present investigation shows the effect of alkalinepH on the structure-function relationship of lipase from wheat germ. There is a 70% decrease in lipase activity atpH 10.0, which decreases to 93% atpH 12.0 as compared to neutralpH activity (Rajendranet al. 1990). This change is shown to be as a result of loss ofa-helical structure with a concomitant increase in aperiodic structure. The results with fluorescence spectra and tyrosyl ionization indicate gradual exposure of aromatic side chains of tyrosine and tryptophan to the bulk solvent along with the structural changes. The enzyme is in an extended form at alkalinepH with a volume change of -1300 ml/mol as also indicated by increase in reduced viscosity to 12.5 ml/g and significant decrease in sedimentation coefficient. The kinetics of the reaction points to a cooperative pseudo first-order reaction as determined by stopped-flow kinetic analysis in the ultraviolet region. The inactivation mechanism appears to follow a two-step mechanism of a fast and a slow reaction.This paper was presented partly at the 58th Annual General Body Meeting of the Society of Biological Chemists (India), Izatnagar, Uttar Pradesh, India, 1989.  相似文献   

3.
Devaraneni PK  Mishra N  Bhat R 《Biochimie》2012,94(4):947-952
Osmolytes produced under stress in animal and plant systems have been shown to increase thermal stability of the native state of a number of proteins as well as induce the formation of molten globule (MG) in acid denatured states and compact conformations in natively unfolded proteins. However, it is not clear whether these solutes stabilize native state relative to the MG state under partially denaturing conditions. Yeast hexokinase A exists as a MG state at pH 2.5 that does not show any cooperative transition upon heating. Does the presence of some of these osmolytes at pH 2.5 help in the retention of structure that is typical of native state? To answer this question, the effect of ethylene glycol (EG), glycerol, xylitol, sorbitol, trehalose and glucose at pH 2.5 on the structure and stability of yeast hexokinase A was investigated using spectroscopy and calorimetry. In presence of the above osmolytes, except EG, yeast hexokinase at pH 2.5 retains native secondary structure and hydrophobic core and unfolds with excessive heat absorption upon thermal denaturation. However, the cooperative structure binds to ANS suggesting that it is an intermediate between MG and the native state. Further, we show that at high concentration of polyols at pH 2.5, except EG, which populates a non-native ensemble, ΔHcalHvan approaches unity indicative of two-state unfolding. The results suggest that osmolytes stabilize cooperative protein structure relative to non-cooperative ensemble. These findings have implications toward the structure formation, folding and stability of proteins produced under stress in cellular systems.  相似文献   

4.
The lipase from wheat germ was used for the kinetic resolution of secondary alcohols. It has the opposite enantioselectivity against the Kazlauskas rule and acts as an anti-Kazlauskas catalyst. The effect of initial water activity, organic solvent, acyl donor and temperature were investigated. Wheat germ lipase had a high activity and enantioselectivity only in n-hexane with a high initial water activity (αw = 0.97), especially with 1-phenylethanol (C 32%, E > 200). Its performance changed little with the chain length of acyl donor and temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Current control of gastrointestinal nematodes relies primarily on the use of synthetic drugs and encounters serious problems of resistance. Oral administration of plant cysteine proteinases, known to be capable of damaging nematode cuticles, has recently been recommended to overcome these problems. This prompted us to examine if plant cysteine proteinases like the four papaya proteinases papain, caricain, chymopapain, and glycine endopeptidase that have been investigated here can survive acidic pH conditions and pepsin degradation. The four papaya proteinases have been found to undergo, at low pH, a conformational transition that instantaneously converts their native forms into molten globules that are quite unstable and rapidly degraded by pepsin. As shown by activity measurements, the denatured state of these proteinases which finally results from acid treatment is completely irreversible. It is concluded that cysteine proteinases from plant origin may require to be protected against both acid denaturation and proteolysis to be effective in the gut after oral administration.  相似文献   

6.
7.
Concanavalin A (Con A) exists in dimeric state at pH 5. In concentration range 20-60% (v/v) 2,2,2-trifluoroethanol (TFE) and 2-40% (v/v) 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), Con A at pH 5.0 shows visible aggregation. However, when succinyl Con A was used, no aggregation was observed in the entire concentration range of fluoroalcohols (0-90% v/v TFE and HFIP) and resulted in stable alpha-helix formation. Temperature-induced concentration-dependent aggregation in Con A was also found to be prevented/reduced in succinylated form. Possible role of electrostatic repulsion among residues in the prevention of hydrophobically driven aggregation has been discussed. Results indicate that succinylation of a protein resulted in greater stability (in both beta-sheet and alpha-helical forms) against alcohol-induced and temperature-induced concentration-dependent aggregation and this observation may play significant role in amyloid-forming proteins. Effect of TFE and HFIP on the conformation of a dimeric protein, Succinylated Con A, has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of hydrophobic dye ANS (8-anilinonaphthalene-1-sulfonic acid). Far UV-CD, a probe for secondary structure shows loss of native secondary structure in the presence of low concentration of both the alcohols, TFE (10% v/v) and HFIP (4% v/v). Upon addition of higher concentration of these alcohols, Succinylated Con A exhibited transformation from beta-sheet to alpha-helical structure. Intrinsic tryptophan fluorescence studies, ANS binding and near UV-CD experiments indicate the protein is more expanded, have more exposed hydrophobic surfaces and highly disrupted tertiary structure at 60% (v/v) TFE and 30% (v/v) HFIP concentrations. Taken together, these results it might be concluded that TFE and HFIP induce two intermediate states at their low and high concentrations in Succinyl Con A.  相似文献   

8.
The influence of model negatively charged membranes on the structure of sperm whale holomyoglobin at pH 6.2 has been investigated using a variety of techniques (far-UV and near-UV circular dichroism, tryptophan fluorescence, absorption spectroscopy, differential scanning microcalorimetry, and fast-performance liquid chromatography). It has been shown that, similarly to apomyoglobin, holomyoglobin in the presence of phospholipid vesicles undergoes a conformational transition from the native to the intermediate state, which is characterized by loss of the rigid tertiary structure and the native heme environment; at the same time, the content of -helical secondary structures remains virtually unchanged. The molar phospholipid/protein ratio required for this transition is higher than in the case of apomyoglobin. The properties of holomyoglobin in the presence of negatively charged membranes are largely similar to those of the molten globule state of its apo form in aqueous solution. A possible functional role of this novel non-native state of myoglobin in the cell is discussed.Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 120–128.Original Russian Text Copyright © 2005 by Basova, Tiktopulo, Bychkova.  相似文献   

9.
Human serum albumin (HSA) exists in a molten-globule like state at low pH (pH 2.0). We studied the effects of trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) on the acid-denatured state of HSA by far-UV circular dichroism (CD), near-UV CD, tryptophan fluorescence, and 1-anilinonaphthalene-8-sulfonic acid (ANS) binding. At pH 2.0, these alcohols induced the formation of alpha-helical structure as evident from the increase in mean residue ellipticity (MRE) value at 222 nm. On addition of different alcohols, HSA exhibited a transition from the acid-denatured state to the alpha-helical state and loss of ANS-binding sites reflected by the decrease in ANS fluorescence at 480 nm. However, the concentration range required to bring about the transition varied greatly among different alcohols. HFIP was found to have highest potential whereas methanol was least effective in inducing the transition. The order of effectiveness of alcohols was shown to be: HFIP > TFE > 2-chloroethanol > tert-butanol > isopropanol > ethanol > methanol as evident from the Cm values. The near-UV CD spectra and tryptophan fluorescence showed the differential effects of halogenated alcohols with those of alkanols. A comparison of the m values, showing the dependence of Delta GH on alcohol concentration, suggests that the helix stabilizing potential of different alcohols is due to the additive effect of different constituent groups present whereas remarkably higher potential of HFIP involves some other factor in addition to the contribution of constituent groups.  相似文献   

10.
Naeem A  Fatima S  Khan RH 《Biopolymers》2006,83(1):1-10
A systematic investigation of the effects of detergents [Sodium dodecyl sulphate (SDS), hexa decyltrimethyl ammonium bromide (CTAB) and Tween-20] on the structure of acid-unfolded papain (EC.3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits a substantial amount of secondary structure and is relatively less denatured compared with 6 M GdnHCl (guanidine hydrochloride) but loses the persistent tertiary contacts of the native state. Addition of detergents caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Near-UV CD spectra also showed the regain of native-like spectral features in the presence of 8 mM SDS and 3.5 mM CTAB. Induction of structure in acid-unfolded papain was greater in the presence SDS followed by CTAB and Tween-20. Intrinsic tryptophan fluorescence studies indicate the change in the environment of tryptophan residues upon addition of detergents to acid-unfolded papain. Addition of 8 mM SDS resulted in the loss of ANS binding sites exhibited by a decrease in ANS fluorescence intensity, suggesting the burial of hydrophobic patches. Maximum ANS binding was obtained in the presence of 0.1 mM Tween-20 followed by CTAB, indicating a compact "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in the presence of detergents showed the partial recovery of enzymatic activity. These results suggest that papain at low pH and in the presence of SDS exists in a partially folded state characterized by native-like secondary structure and tertiary folds. While in the presence of Tween, acid-unfolded papain exists as a compact intermediate with molten-globule-like characteristics, viz. enhanced hydrophobic surface area and retention of secondary structure. While in the presence of CTAB it exists as a compact intermediate with regain of native-like secondary and partial tertiary structure as well as high ANS binding with the partially recovered enzymatic activity, i.e., a molten globule state with tertiary folds.  相似文献   

11.
The optimal activity of a Candida rugosa lipase (Lipase OF) for hydrolysis of 2-chloroethyl ester of Ketoprofen [2-(3- benzoyphenyl) propionic acid] was at pH 4.0, while the best enantioselectivity (E) was at pH 2.2 where the enzyme was still 60% active and stable.  相似文献   

12.
Horng JC  Demarest SJ  Raleigh DP 《Proteins》2003,52(2):193-202
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7.  相似文献   

13.
Ahmad B  Ansari MA  Sen P  Khan RH 《Biopolymers》2006,81(5):350-359
The effect of low, medium, and high molecular weight poly(ethylene glycol) (e.g., PEG-400, -6000, and -20,000) on the structure of the acid unfolded state of unmodified stem bromelain (SB) obtained at pH 2.0 has been studied by various spectroscopic methods. The conformation of stem bromelain at pH 2.0 exhibits substantial loss of secondary structure and almost complete loss of native tertiary contacts and has been termed the acid unfolded state (A(U)). Addition of PEG-400 to A(U) led to an increase in the mean residue ellipticity (MRE) value at 222 nm, indicating formation of alpha-helical structure. On the other hand, PEG-6000 and 20,000 led to a decrease in the MRE value at 222 nm, indicating unfolding of the A(U) state. Interestingly, at 70% (w/v) PEG-400 and 40% (w/v) PEG-20,000, MRE values at 222 nm almost approach the native state at pH 7.0 and the unfolded state (6 M GnHCl) of stem bromelain, respectively. The probes for tertiary structure showed formation of nonnative tertiary contacts in the presence of 70% (w/v) PEG-400, while 40% (w/v) PEG-6000 and 20,000 were found to stabilize the unfolded state of SB. An increase in binding of 1-anilino 8-naphthalene sulfonic acid and a decrease in fractional accessibility of tryptophan residues (f(a)) compared to A(U) in the presence of 70% PEG-400 indicate that the PEG-400-induced state has a significant amount of exposed hydrophobic patches and is more compact than A(U). The results imply that the PEG-400-induced state has characteristics of molten globule, and higher molecular weight PEGs led to the unfolding of the A(U) state.  相似文献   

14.
A variety of methods for feed development have been introduced during last few years. Bioprocessed agricultural residues may prove a better alternative to provide animal feed. For the purpose, some white rot fungi were allowed to degrade wheat straw up to 30 days under solid state conditions. Several parameters including loss in total organic matter, ligninolysis, in vitro digestibility of wheat straw and estimation of different antioxidant activities were studied. All the fungi were able to degrade lignin and enhance the in vitro digestibility. Among all the tested fungi, Phlebia brevispora degraded maximum lignin (30.6%) and enhanced the digestibility from 172 to 287 g/kg. Different antioxidant properties of fungal degraded wheat straw were higher as compared to the uninoculated control straw. Phlebia floridensis found to be more efficient organism in terms of higher antioxidant activity (70.8%) and total phenolic content (9.8 mg/ml). Thus, bioprocessing of the wheat straw with the help of these organisms seems to be a better approach for providing the animal feed in terms of enhanced digestibility, higher protein content, higher antioxidant activity and availability of biomass.  相似文献   

15.
I257E was obtained by site directed mutagenesis of nitrite reductase from Achromobacter cycloclastes. The mutant has no enzyme activity. Its crystal structure determined at 1.65A resolution shows that the side-chain carboxyl group of the mutated residue, Glu257, coordinates with the type 2 copper in the mutant and blocks the contact between the type 2 copper and its solvent channel, indicating that the accessibility of the type 2 copper is essential for maintaining the activity of nitrite reductase. The carboxylate is an analog of the substrate, nitrite, but the distances between the type 2 copper and the two oxygen atoms of the side-chain carboxyl group are reversed in comparison to the binding of nitrite to the native enzyme. In the mutant, both the type 2 copper and the N epsilon atom on the imidazole ring of its coordinated residue His135 move in the substrate binding direction relative to the native enzyme. In addition, an EPR study showed that the type 2 copper in the mutant is in a reduced state. We propose that mutant I257E is in a state corresponding to a transition state in the enzymatic reaction.  相似文献   

16.
Zinc transporter 8 (ZnT8) is mainly expressed in pancreatic islet β cells and is responsible for H+-coupled uptake (antiport) of Zn2+ into the lumen of insulin secretory granules. Structures of human ZnT8 and its prokaryotic homolog YiiP have provided structural basis for constructing a plausible transport cycle for Zn2+. However, the mechanistic role that protons play in the transport process remains unclear. Here we present a lumen-facing cryo-EM structure of ZnT8 from Xenopus tropicalis (xtZnT8) in the presence of Zn2+ at a luminal pH (5.5). Compared to a Zn2+-bound xtZnT8 structure at a cytosolic pH (7.5), the low-pH structure displays an empty transmembrane Zn2+-binding site with a disrupted coordination geometry. Combined with a Zn2+-binding assay our data suggest that protons may disrupt Zn2+ coordination at the transmembrane Zn2+-binding site in the lumen-facing state, thus facilitating Zn2+ release from ZnT8 into the lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号