首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient and economical method was developed for the synthesis of 3-substituted indoles by one-pot three-component coupling reaction of a substituted or unsubstituted benzaldehyde, N-methylaniline, and indole or N-methylindole using Yb(OTf)3-SiO2 as a catalyst. All the synthesized compounds were evaluated for inhibition of cell proliferation of human colon carcinoma (HT-29), human ovarian adenocarcinoma (SK-OV-3), and c-Src kinase activity. The 4-methylphenyl (4o and 4p) and 4-methoxyphenyl (4q) indole derivatives inhibited the cell proliferation of SK-OV-3 and HT-29 cells by 70-77% at a concentration of 50 μM. The unsubstituted phenyl (4d) and 3-nitrophenyl (4l) derivatives showed the inhibition of c-Src kinase with IC50 values of 50.6 and 58.3 μM, respectively.  相似文献   

2.
A series of two classes of 3-phenylpyrazolopyrimidine-1,2,3-triazole conjugates were synthesized using click chemistry approach. All compounds were evaluated for inhibition of Src kinase and human ovarian adenocarcinoma (SK-Ov-3), breast carcinoma (MDA-MB-361), and colon adenocarcinoma (HT-29). Hexyl triazolyl-substituted 3-phenylpyrazolopyrimidine exhibited inhibition of Src kinase with an IC50 value of 5.6 μM. 4-Methoxyphenyl triazolyl-substituted 3-phenylpyrazolopyrimidine inhibited the cell proliferation of HT-29 and SK-Ov-3 by 73% and 58%, respectively, at a concentration of 50 μM.  相似文献   

3.
Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.  相似文献   

4.
Chemically modified versions of bioactive substances, are particularly useful in overcoming barriers associated with drug formulation, drug delivery and poor pharmacokinetic properties. In this study, a series of fourteen (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate (215) were prepared by using a one step synthesis from 1 previously described by us as potential antimalarial and antitumor agent. Molecules were evaluated as inhibitors of β-hematin formation, where most of them showed a significant inhibition value (%?>?70). The best inhibitors were tested in vivo as potential antimalarials in mice infected with P. berghei ANKA, chloroquine susceptible strain. Three of them (5, 6, and 15) displayed antimalarial activity comparable to that of chloroquine. Also, molecules were evaluated for their cytotoxic activity against two human cancer cell lines (Jurkat E6.1 and HL60) and primary culture of human lymphocytes. Most of the synthesized compounds, except for analogs 26, 8, and 1012, displayed cytotoxicity against cancer cell lines without affecting normal cells. The potency of the compounds was 15???1, and 14?>?7, 9, and 13. Flow cytometry analysis demonstrated an increase in apoptotic cell death after 24?h. The compounds may affect tumor cell autophagy and consequently increase cell apoptosis.  相似文献   

5.
Activators of the pyruvate kinase M2 (PKM2) are currently attracting significant interest as potential anticancer therapies. They may achieve a novel antiproliferation response in cancer cells through modulation of the classic ‘Warburg effect’ characteristic of aberrant metabolism. In this Letter, we describe the optimization of a weakly active screening hit to a structurally novel series of small molecule 3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as potent PKM2 activators.  相似文献   

6.
Previous kinetic studies demonstrated that nucleotide-derived conformational changes regulate function in the COOH-terminal Src kinase. We have employed enhanced methods of hydrogen-deuterium exchange-mass spectrometry (DXMS) to probe conformational changes on CSK in the absence and presence of nucleotides and thereby provide a structural framework for understanding phosphorylation-driven conformational changes. High quality peptic fragments covering approximately 63% of the entire CSK polypeptide were isolated using DXMS. Time-dependent deuterium incorporation into these probes was monitored to identify short peptide segments that exchange differentially with solvent. Regions expected to lie in loops exchange rapidly, whereas other regions expected to lie in stable secondary structure exchange slowly with solvent implying that CSK adopts a modular structure. The ATP analog, AMPPNP, protects probes in the active site and distal regions in the large and small lobes of the kinase domain, the SH2 domain, and the linker connecting the SH2 and kinase domains. The product ADP protects similar regions of the protein but the extent of protection varies markedly in several crucial areas. These areas correspond to the activation loop and helix G in the kinase domain and several inter-domain regions. These results imply that delivery of the gamma phosphate group of ATP induces unique local and long-range conformational changes in CSK that may influence regulatory motions in the catalytic pathway.  相似文献   

7.
Smooth muscle cells (SMCs) are exposed to both platelet-derived growth factor (PDGF) and type I collagen (CNI) at the time of arterial injury. In these studies we explore the individual and combined effects of these agonists on human saphenous vein SMC proliferation. PDGF-BB produced a 5.5-fold increase in SMC DNA synthesis whereas CNI stimulated DNA synthesis to a much lesser extent (1.6-fold increase). Alternatively, we observed an 8.3-fold increase in DNA synthesis when SMCs were co-incubated with CNI and PDGF-BB. Furthermore, stimulation of SMCs with PDGF-BB produced a significant increase in ERK-2 activity whereas CNI alone had no effect. Co-incubation of SMCs with PDGF-BB and CNI resulted in ERK-2 activity that was markedly greater than that produced by PDGF-BB alone. In a similar fashion, PDGF-BB induced phosphorylation of the PDGF receptor beta (PDGFRbeta) and CNI did not, whereas concurrent agonist stimulation produced a synergistic increase in receptor activity. Blocking antibodies to the alpha2 and beta1 subunits eliminated this synergistic interaction, implicating the alpha2beta1 integrin as the mediator of this effect. Immunoprecipitation of the alpha2beta1 integrin in unstimulated SMCs followed by immunoblotting for the PDGFRbeta as well as Src family members, pp60(src), Fyn, Lyn, and Yes demonstrated coassociation of alpha2beta1 and the PDGFRbeta as well as pp60(src). Incubation of cells with CNI and/or PDGF-BB did not change the degree of association. Finally, inhibition of Src activity with SU6656 eliminated the synergistic effect of CNI on PDGF-induced PDGFRbeta phosphorylation suggesting an important role for pp60(src) in the observed receptor crosstalk. Together, these data demonstrate that CNI synergistically enhances PDGF-induced SMC proliferation through Src-dependent crosstalk between the alpha2beta1 integrin and the PDGFRbeta.  相似文献   

8.
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has many beneficial physiological functions ranging from enhancing fatty acid catabolism, improving insulin sensitivity, inhibiting inflammation and increasing oxidative myofibers allowing for improved athletic performance. Thus, given the potential for targeting PPARβ/δ for the prevention and/or treatment of diseases including diabetes, dyslipidemias, metabolic syndrome and cancer, it is critical to clarify the functional role of PPARβ/δ in cell proliferation and associated disorders such as cancer. However, there is considerable controversy whether PPARβ/δ stimulates or inhibits cell proliferation. This review summarizes the literature describing the influence of PPARβ/δ on cell proliferation, with an emphasis toward dissecting the data that give rise to opposing hypotheses. Suggestions are offered to standardize measurements associated with these studies so that interlaboratory comparisons can be accurately assessed.  相似文献   

9.
Src, the canonical member of the non-receptor family of tyrosine kinases, is deregulated in numerous cancers, including colon and breast cancers. In addition to its effects on cell proliferation and motility, Src is often considered as an inhibitor of apoptosis, although this remains controversial. Thus, whether the ability of Src to generate malignancies relies on an intrinsic aptitude to inhibit apoptosis or requires preexistent resistance to apoptosis remains somewhat elusive. Here, using mouse fibroblasts transformed with v-Src as a model, we show that the observed Src-dependent resistance to cell death relies on Src ability to inhibit the mitochondrial pathway of apoptosis by specifically increasing the degradation rate of the BH3-only protein Bik. This effect relies on the activation of the Ras-Raf-Mek1/2-Erk1/2 pathway, and on the phosphorylation of Bik on Thr124, driving Bik ubiquitylation on Lys33 and subsequent degradation by the proteasome. Importantly, in a set of human cancer cells with Src-, Kras- or BRAF-dependent activation of Erk1/2, resistances to staurosporine or thapsigargin were also shown to depend on Bik degradation rate via a similar mechanism. These results suggest that Bik could be a rate-limiting factor for apoptosis induction of tumor cells exhibiting deregulated Erk1/2 signaling, which may provide new opportunities for cancer therapies.  相似文献   

10.
A series of substituted 3-(benzylthio)-5-(1H-indol-3-yl)-4H-1,2,4-triazol-4-amines has been synthesised and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents. Synthesis of the target compounds was readily accomplished in good yields through a cyclisation reaction between indole-3-carboxylic acid hydrazide and carbon disulfide under basic conditions, followed by S-benzylation. Active compounds, such as the nitrobenzyl analogue 6c, were found to exhibit sub-micromolar IC50 values in Bcl-2 expressing human cancer cell lines. Molecular modelling and ELISA studies further implicated anti-apoptotic Bcl-2 as a candidate molecular target underpinning anticancer activity.  相似文献   

11.
Phenoxypropanolamines with 1-oxo-isoindoline and 5,6-dimethoxy-1-oxo-isoindoline groups at the para position were synthesized. beta1, beta2-Adrenergic receptor binding affinities for the synthesized compounds were tested and compared with propranolol and atenolol. It was found that the incorporation of para-amidic functionality within the 1-oxo-isoindoline ring and 5,6-dimethoxy-1-oxo-isoindoline ring system led to a high degree of cardioselectivity in the phenoxypropanolamines. Two of the compounds and possessed beta1-adrenergic receptor affinity comparable with that of atenolol and both showed a better cardioselectivity than atenolol. Both and are undergoing further pharmacological evaluation.  相似文献   

12.
Transferrin receptor 1 (TfR1) is a ubiquitous type II membrane receptor with 61 amino acids in the N-terminal cytoplasmic region. TfR1 is highly expressed in cancer cells, particularly under iron deficient conditions. Overexpression of TfR1 is thought to meet the increased requirement of iron uptake necessary for cell growth. In the present study, we used transferrin (Tf), a known ligand of TfR1, and gambogic acid (GA), an apoptosis-inducing agent and newly identified TfR1 ligand to investigate the signaling role of TfR1 in breast cancer cells. We found that GA but not Tf induced apoptosis in a TfR1-dependent manner in breast cancer MDA-MB-231 cells. Estrogen receptor-positive MCF-7 cells lack caspase-3 and were not responsive to GA treatment. GA activated the three major signaling pathways of the MAPK family, as well as caspase-3, -8, and Poly(ADP-ribose)polymerase apoptotic pathway. Interestingly, only Src inhibitor PP2 greatly sensitized the cells to GA-mediated apoptosis. Further investigations by confocal fluorescence microscopy and immunoprecipitation revealed that Src and TfR1 are constitutively bound. Using TfR1-deficient CHO TRVB cells, point mutation studies showed that Tyr(20) within the (20)YTRF(23) motif of the cytoplasmic region of TfR1 is the phosphorylation site by Src. TfR1 Tyr(20) phosphomutants were more sensitive to GA-mediated apoptosis. Our results indicate that, albeit its iron uptake function, TfR1 is a signaling molecule and tyrosine phosphorylation at position 20 by Src enhances anti-apoptosis and potentiates breast cancer cell survival.  相似文献   

13.
The identification and hit-to-lead exploration of a novel, potent and selective series of substituted benzimidazole–thiophene carbonitrile inhibitors of IKK-ε kinase is described. Compound 12e was identified with an IKK-ε enzyme potency of pIC50 7.4, and has a highly encouraging wider selectivity profile, including selectivity within the IKK kinase family.  相似文献   

14.
The reaction of 5-(1-adamantyl)-1,3,4-oxadiazoline-2-thione 2 with iodoethane, 2-dimethylaminoethyl chloride hydrochloride or 2-piperidinoethyl chloride hydrochloride in ethanolic potassium hydroxide yielded the corresponding 5-(1-adamantyl)-2-ethyl or substituted ethylthio-1,3,4-oxadiazoles 3a-c. Interaction of 2 with formaldehyde solution and primary aromatic amines or 1-substituted piperazines, in ethanol at room temperature yielded the corresponding 5-(1-adamantyl)-3-arylaminomethyl-1,3,4-oxadiazoline-2-thiones 4a-m or 5-(1-adamantyl)-3-(4-substituted-1-piperazinylmethyl)-1,3,4-oxadiazoline-2-thiones 5a-h, respectively. All the synthesized compounds were tested for in vitro activities against certain strains of Gram-positive and Gram-negative bacteria and the yeast-like pathogenic fungus Candida albicans. Compounds 2, 5a, and 5e were found as the most active derivatives, particularly against the Gram-positive bacteria. In addition, the antiviral activity of compounds 2, 4a-m, and 5a-h against HIV-1 using the XTT assay was carried out. Compound 2 produced 100%, 43%, and 37% reduction of viral replication at 50, 10, and 2microg/mL concentrations, respectively.  相似文献   

15.
A series of 5-(1H-indol-3-yl)-N-aryl-1,3,4-oxadiazol-2-amines 8a–j has been designed, synthesized and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents based on our previous lead compound 8a. Synthesis of the target compounds was readily accomplished through a cyclisation reaction between indole-3-carboxylic acid hydrazide (5) and substituted isothiocyanates 6a–j, followed by oxidative cyclodesulfurization of the corresponding thiosemicarbazide 7a–j using 1,3-dibromo-5,5-dimethylhydantoin. Active compounds of the series 8a–j were found to have sub-micromolar IC50 values selectively in Bcl-2 expressing human cancer cell lines; notably the 2-nitrophenyl analogue 8a was found to exhibit potent activity, and compounds 8a and 8e possessed comparable Bcl-2 binding affinity (ELISA assay) to the established natural product-based Bcl-2 inhibitor, gossypol. Molecular modeling studies helped to further rationalise anti-apoptotic Bcl-2 binding, and identified compounds 8a and 8e as candidates for further development as Bcl-2 inhibitory anticancer agents.  相似文献   

16.
A novel series of diphenyl 1-(arylamino)-1-(pyridin-3-yl)ethylphosphonates 1-5 was obtained in high yields from reactions of 3-acetyl pyridine with aromatic amines and triphenylphosphite in the presence of lithium perchlorate as a catalyst. The structures of the synthesized compounds were confirmed by IR, (1)H NMR spectral data and microanalyses. Compounds 1-5 showed high antimicrobial activities against Escherichia coli (NCIM2065) as a Gram-negative bacterium, Bacillus subtilis (PC1219) and Staphylococcus aureus (ATCC25292) as Gram-positive bacteria and Candidaalbicans and Saccharomyces cerevisiae as fungi, at low concentrations (10-100 μg/mL). Also, the synthesized compounds showed significant cytotoxicity anticancer activities against liver carcinoma cell line (HepG2) and human breast adenocarcinoma cell line (MCF7). The lethal dose of the synthesized compounds was also determined and indicated that most compounds are safe to use.  相似文献   

17.
A group of 1-(aminosulfonylphenyl and methylsulfonylphenyl)-2-(pyridyl)acetylene regioisomers were designed such that a COX-2 SO2NH2 pharmacophore was located at the para-position of the phenyl ring, or a SO2Me pharmacophore was placed at the ortho-, meta- or para-position of the phenyl ring, on an acetylene template (scaffold). The point of attachment of the pyridyl ring to the acetylene linker was simultaneously varied (2-pyridyl, 3-pyridyl, 4-pyridyl, 3-methyl-2-pyridyl) to determine the combined effects of positional, steric, and electronic substituent properties upon COX-1 and COX-2 inhibitory potency and COX isozyme selectivity. These target linear 1-(phenyl)-2-(pyridyl)acetylenes were synthesized via a palladium-catalyzed Sonogashira cross-coupling reaction. Structure-activity relationship (SAR) data (IC50 values) acquired by determination of the in vitro ability of the title compounds to inhibit the COX-1 and COX-2 isozymes showed that the position of the COX-2 SO2NH2 or SO2Me pharmacophore on the phenyl ring, and the point of attachment of the pyridyl ring to the acetylene linker, were either individual, or collective, determinants of COX-2 inhibitory potency and selectivity. A number of compounds discovered in this study, particularly 1-(4-aminosulfonylphenyl)-2-(3-methyl-2-pyridyl)acetylene (22), 1-(3-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (27), 1-(3-methanesulfonylphenyl)-2-(4-pyridyl)acetylene (29), 1-(4-methanesulfonylphenyl)-2-(2-pyridyl)acetylene (30), and 1-(4-methanesulfonylphenyl)-2-(3-pyridyl)acetylene (31), exhibit potent (IC50 = 0.04-0.33 microM range) and selective (SI = 18 to >312 range) COX-2 inhibitory activities, that compare favorably with the reference drug celecoxib (COX-2 IC50 = 0.07 microM; COX-2 SI = 473). The sulfonamide (22), and methylsulfonyl (27 and 31), compounds exhibited anti-inflammatory activities (ID50 = 59.9-76.6 mg/kg range) that were intermediate in potency between the reference drugs aspirin (ID50 = 128.7 mg/kg) and celecoxib (ID50 = 10.8 mg/kg).  相似文献   

18.
A series of novel quinoxalinyl-piperazine compounds, 1-[(5 or 6-substituted alkoxyquinoxalinyl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives were synthesized and evaluated as an anticancer agent. From screening of quinoxalinyl-piperazine compound library, we identified that many compounds inhibited proliferation of various human cancer cells at nanomolar concentrations. Among them, one of the fluoro quinoxalinyl-piperazine derivatives showed its IC(50) values ranging from 11 to 21nΜ in the growth inhibition of cancer cells. This compound also displayed a more potent effect than paclitaxel against paclitaxel resistant HCT-15 colorectal carcinoma cells. The potency of this novel compound was further confirmed with the synergistic cytotoxic effect with several known cancer drugs such as paclitaxel, doxorubicin, cisplatin, gemcitabine or 5-fluorouracil in cancer cells. This strong cell killing effect was derived from the induction of apoptosis. Mechanistic studies have shown that this quinoxalinyl-piperazine compound is a G2/M-specific cell cycle inhibitor and inhibits anti-apoptotic Bcl-2 protein with p21 induction. Thus the results suggest that our compound has potential use in the growth inhibition of drug resistant cancer cells and the combination therapy with other clinically approved anticancer agents as well.  相似文献   

19.
Pre‐natal alcohol exposure causes fetal alcohol spectrum disorders (FASD), the most common, preventable cause of developmental disability. The developing cerebellum is particularly vulnerable to the effects of ethanol. We reported that ethanol inhibits the stimulation of axon outgrowth in cerebellar granule neurons (CGN) by NAP, an active motif of activity‐dependent neuroprotective protein (ADNP), by blocking NAP activation of Fyn kinase and its downstream signaling molecule, the scaffolding protein Cas. Here, we asked whether ethanol inhibits the stimulation of axon outgrowth by diverse axon guidance molecules through a common action on the Src family kinases (SFK). We first demonstrated that netrin‐1, glial cell line‐derived neurotrophic factor (GDNF), and neural cell adhesion molecule L1 stimulate axon outgrowth in CGNs by activating SFK, Cas, and extracellular signal‐regulated kinase 1 and 2 (ERK1/2). The specific SFK inhibitor, PP2, blocked the stimulation of axon outgrowth and the activation of the SFK‐Cas‐ERK1/2 signaling pathway by each of these axon‐guidance molecules. In contrast, brain‐derived neurotrophic factor (BDNF) stimulated axon outgrowth and activated ERK1/2 without first activating SFK or Cas. Clinically relevant concentrations of ethanol inhibited axon outgrowth and the activation of the SFK‐Cas‐ERK1/2 pathway by netrin‐1, GDNF, and L1, but did not disrupt BDNF‐induced axon outgrowth or ERK1/2 activation. These results indicate that SFK, but not ERK1/2, is a primary target for ethanol inhibition of axon outgrowth. The ability of ethanol to block the convergent activation of the SFK‐Cas‐ERK1/2 pathway by netrin‐1, GDNF, L1, and ADNP could contribute significantly to the pathogenesis of FASD.  相似文献   

20.

Background

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca2+/calmodulin-dependent kinase (CaMK) family involved in adiposity regulation, glucose homeostasis and cancer. This upstream activator of CaMKI, CaMKIV and AMP-activated protein kinase is inhibited by phosphorylation, which also triggers an association with the scaffolding protein 14-3-3. However, the role of 14-3-3 in the regulation of CaMKK2 remains unknown.

Methods

The interaction between phosphorylated CaMKK2 and the 14-3-3γ protein, as well as the architecture of their complex, were studied using enzyme activity measurements, small-angle x-ray scattering (SAXS), time-resolved fluorescence spectroscopy and protein crystallography.

Results

Our data suggest that the 14-3-3 protein binding does not inhibit the catalytic activity of phosphorylated CaMKK2 but rather slows down its dephosphorylation. Structural analysis indicated that the complex is flexible and that CaMKK2 is located outside the phosphopeptide-binding central channel of the 14-3-3γ dimer. Furthermore, 14-3-3γ appears to interact with and affect the structure of several regions of CaMKK2 outside the 14-3-3 binding motifs. In addition, the structural basis of interactions between 14‐3-3 and the 14-3-3 binding motifs of CaMKK2 were elucidated by determining the crystal structures of phosphopeptides containing these motifs bound to 14-3-3.

Conclusions

14-3-3γ protein directly interacts with the kinase domain of CaMKK2 and the region containing the inhibitory phosphorylation site Thr145 within the N-terminal extension.

General significance

Our results suggested that CaMKK isoforms differ in their 14-3-3-mediated regulations and that the interaction between 14-3-3 protein and the N-terminal 14-3-3-binding motif of CaMKK2 might be stabilized by small-molecule compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号