首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In neurodegenerative disorders of the aging population, misfolded proteins, such as PrPSc, α-synuclein, amyloid β protein and tau, can interact resulting in enhanced aggregation, cross seeding and accelerated disease progression. Previous reports have shown that in Creutzfeldt-Jakob disease and scrapie, α-synuclein accumulates near PrPSc deposits. However, it is unclear if pre-existing human α-synuclein aggregates modified prion disease pathogenesis, or if PrPSc exacerbates the α-synuclein pathology. Here, we inoculated infectious prions into aged α-synuclein transgenic (tg) and non-transgenic littermate control mice by the intracerebral route. Remarkably, inoculation of RML and mNS prions into α-synuclein tg mice resulted in more extensive and abundant intraneuronal and synaptic α-synuclein accumulation. In addition, infectious prions led to the formation of perineuronal α-synuclein deposits with a neuritic plaque-like appearance. Prion pathology was unmodified by the presence of α-synuclein. However, with the mNS prion strain there was a modest but significant acceleration in the time to terminal prion disease in mice having α-synuclein aggregates as compared with non-tg mice. Taken together, these studies support the notion that PrPSc directly or indirectly promotes α-synuclein pathology.  相似文献   

2.
《朊病毒》2013,7(2):184-190
In neurodegenerative disorders of the aging population, misfolded proteins, such as PrPSc, α-synuclein, amyloid β protein and tau, can interact resulting in enhanced aggregation, cross seeding and accelerated disease progression. Previous reports have shown that in Creutzfeldt-Jakob disease and scrapie, α-synuclein accumulates near PrPSc deposits. However, it is unclear if pre-existing human α-synuclein aggregates modified prion disease pathogenesis, or if PrPSc exacerbates the α-synuclein pathology. Here, we inoculated infectious prions into aged α-synuclein transgenic (tg) and non-transgenic littermate control mice by the intracerebral route. Remarkably, inoculation of RML and mNS prions into α-synuclein tg mice resulted in more extensive and abundant intraneuronal and synaptic α-synuclein accumulation. In addition, infectious prions led to the formation of perineuronal α-synuclein deposits with a neuritic plaque-like appearance. Prion pathology was unmodified by the presence of α-synuclein. However, with the mNS prion strain there was a modest but significant acceleration in the time to terminal prion disease in mice having α-synuclein aggregates as compared with non-tg mice. Taken together, these studies support the notion that PrPSc directly or indirectly promotes α-synuclein pathology.  相似文献   

3.
The intrinsically unfolded protein α-synuclein has an N-terminal domain with seven imperfect KTKEGV sequence repeats and a C-terminal domain with a large proportion of acidic residues. We characterized pK(a) values for all 26 sites in the protein that ionize below pH 7 using 2D (1) H-(15) N HSQC and 3D C(CO)NH NMR experiments. The N-terminal domain shows systematically lowered pK(a) values, suggesting weak electrostatic interactions between acidic and basic residues in the KTKEGV repeats. By contrast, the C-terminal domain shows elevated pK(a) values due to electrostatic repulsion between like charges. The effects are smaller but persist at physiological salt concentrations. For α-synuclein in the membrane-like environment of sodium dodecylsulfate (SDS) micelles, we characterized the pK(a) of His50, a residue of particular interest since it is flanked within one turn of the α-helix structure by the Parkinson's disease-linked mutants E46K and A53T. The pK(a) of His50 is raised by 1.4 pH units in the micelle-bound state. Titrations of His50 in the micelle-bound states of the E46K and A53T mutants show that the pK(a) shift is primarily due to interactions between the histidine and the sulfate groups of SDS, with electrostatic interactions between His50 and Glu46 playing a much smaller role. Our results indicate that the pK(a) values of uncomplexed α-synuclein differ significantly from random coil model peptides even though the protein is intrinsically unfolded. Due to the long-range nature of electrostatic interactions, charged residues in the α-synuclein sequence may help nucleate the folding of the protein into an α-helical structure and confer protection from misfolding.  相似文献   

4.
To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD (‘dying back’ of axons).  相似文献   

5.
Neurobiology of α-synuclein   总被引:4,自引:0,他引:4  
  相似文献   

6.
《Autophagy》2013,9(3):372-374
α-synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of α-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of α-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates α-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of α-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated α-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated α-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated α-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing α-synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.

Addendum to: Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S. Monoubiquitination of α-synuclein by SIAH promotes its aggregation in dopaminergic cells. J Biol Chem 2007; Epub ahead of print.  相似文献   

7.
α-Synuclein is the main constituent of Lewy bodies in familial and sporadic cases of Parkinson’s disease (PD). Autosomal dominant point mutations, gene duplications or triplications in the α-synuclein (SNCA) gene cause hereditary forms of PD. One of the α-synuclein point mutations, Ala53Thr, is associated with increased oligomerization toxicity leading to familial early-onset PD in humans. The amino acid in position 53 in α-synuclein is an alanine in humans, great apes and Old World primates. However, this amino acid is a threonine in the α-synuclein of all other examined species, including New World monkeys. Here, we present DNA sequence analysis of SNCA and the deduced amino acid sequences of α-synuclein cloned from various different species, ranging from fish to mammals, which are known for their long-living potential. In all these investigated species the 53Thr is found. We conclude that 53Thr is not a molecular adaptation for long-living animals to minimize the risk of developing PD.  相似文献   

8.
Accumulation of misfolded α-synuclein in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD). To identify ligands having high binding potency toward aggregated α-synuclein, we synthesized a series of phenothiazine derivatives and assessed their binding affinity to recombinant α-synuclein fibrils using a fluorescent thioflavin T competition assay. Among 16 new analogues, the in vitro data suggest that compound 11b has high affinity to α-synuclein fibrils (K(i)=32.10 ± 1.25 nM) and compounds 11d, 16a and16b have moderate affinity to α-synuclein fibrils (K(i)≈50-100 nM). Further optimization of the structure of these analogues may yield compounds with high affinity and selectivity for aggregated α-synuclein.  相似文献   

9.
α-Synuclein (αS) is an intrinsically disordered protein whose aggregation into ordered, fibrillar structures underlies the pathogenesis of Parkinson's disease. A full understanding of the factors that cause its conversion from soluble protein to insoluble aggregate requires characterization of the conformations of the monomer protein under conditions that favor aggregation. Here we use single molecule Förster resonance energy transfer to probe the structure of several aggregation-prone states of αS. Both low pH and charged molecules have been shown to accelerate the aggregation of αS and induce conformational changes in the protein. We find that at low pH, the C-terminus of αS undergoes substantial collapse, with minimal effect on the N-terminus and central region. The proximity of the N- and C-termini and the global dimensions of the protein are relatively unaffected by the C-terminal collapse. Moreover, although compact at low pH, with restricted chain motion, the structure of the C-terminus appears to be random. Low pH has a dramatically different effect on αS structure than the molecular aggregation inducers spermine and heparin. Binding of these molecules gives rise to only minor conformational changes in αS, suggesting that their mechanism of aggregation enhancement is fundamentally different from that of low pH.  相似文献   

10.
11.
Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2'NH(2)-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo.  相似文献   

12.
This review describes different ways to achieve and monitor reproducible aggregation of α-synuclein, a key protein in the development of Parkinson's disease. For most globular proteins, aggregation is promoted by partially denaturing conditions which compromise the native state without destabilizing the intermolecular contacts required for accumulation of regular amyloid structure. As a natively disordered protein, α-synuclein can fibrillate under physiological conditions and this process is actually stimulated by conditions that promote structure formation, such as low pH, ions, polyamines, anionic surfactants, fluorinated alcohols and agitation. Reproducibility is a critical issue since α-synuclein shows erratic fibrillation behavior on its own. Agitation in combination with glass beads significantly reduces the variability of aggregation time curves, but the most reproducible aggregation is achieved by sub-micellar concentrations of SDS, which promote the rapid formation of small clusters of α-synuclein around shared micelles. Although the fibrils produced this way have a different appearance and secondary structure, they are rich in cross-β structure and are amenable to high-throughput screening assays. Although such assays at best provide a very simplistic recapitulation of physiological conditions, they allow the investigator to focus on well-defined molecular events and may provide the opportunity to identify, e.g. small molecule inhibitors of aggregation that affect these steps. Subsequent experiments in more complex cellular and whole-organism environments can then validate whether there is any relation between these molecular interactions and the broader biological context.  相似文献   

13.
The effect of adding ethylammonium nitrate (EAN), which is an ionic liquid (IL), on the aggregate formation of α-synuclein (α-Syn) in aqueous solution has been investigated. FTIR and Raman spectroscopy were used to investigate changes in the secondary structure of α-Syn and in the states of water molecules and EAN. The results presented here show that the addition of EAN to α-Syn causes the formation of an intermolecular β-sheet structure in the following manner: native disordered state → polyproline II (PPII)-helix → intermolecular β-sheet (α-Syn amyloid-like aggregates: α-SynA). Although cations and anions of EAN play roles in masking the charged side chains and PPII-helix-forming ability involved in the formation of α-SynA, water molecules are not directly related to its formation. We conclude that EAN-induced α-Syn amyloid-like aggregates form at hydrophobic associations in the middle of the molecules after masking the charged side chains at the N- and C-terminals of α-Syn.  相似文献   

14.
In this paper, the Sequential Collapse Model (SCM) for protein folding pathways is applied to investigate the location of the non-local contacts in the intrinsically disordered state of α-synuclein, a protein implicated in the onset and spreading of several serious neurodegenerative diseases. The model relies on the entropic cost of forming protein loops due to self-crowding effects, and the protein sequence to determine contact location and stability. It is found that the model predicts the existence of several possible non-local contacts, and the location of the non-local contacts is consistent with existing experimental evidence. The bearing of these findings on the pathogenic mechanism and its regulation is discussed.  相似文献   

15.

Background

Recent studies suggest that the pathogenic process in neurodegenerative disorders may disrupt mature neuronal circuitries and neurogenesis in the adult brain. Abnormal activation of CDK5 is associated with neurodegenerative disorders, and recently a critical role for CDK5 in adult neurogenesis has been identified. We have developed an in vitro model of abnormal CDK5 activation during adult hippocampal neurogenesis, and here we used this model to investigate aberrantly phosphorylated downstream targets of CDK5.

Results

Abnormal CDK5 activation in an in vitro model of adult neurogenesis results in hyperphosphorylation of collapsin-response mediator protein-2 (CRMP2) and impaired neurite outgrowth. Inhibition of CDK5, or expression of a non-phosphorylatable (S522A) CRMP2 construct reduced CRMP2 hyperphosphorylation, and reversed neurite outgrowth deficits. CRMP2 plays a role in microtubule dynamics; therefore we examined the integrity of microtubules in this model using biochemical and electron microscopy techniques. We found that microtubule organization was disrupted under conditions of CDK5 activation. Finally, to study the relevance of these findings to neurogenesis in neurodegenerative conditions associated with HIV infection, we performed immunochemical analyses of the brains of patients with HIV and transgenic mice expressing HIV-gp120 protein. CDK5-mediated CRMP2 phosphorylation was significantly increased in the hippocampus of patients with HIV encephalitis and in gp120 transgenic mice, and this effect was rescued by genetic down-modulation of CDK5 in the mouse model.

Conclusions

These results reveal a functional mechanism involving microtubule destabilization through which abnormal CDK5 activation and CRMP2 hyperphosphorylation might contribute to defective neurogenesis in neurodegenerative disorders such as HIV encephalitis.  相似文献   

16.

Background

Recently diphenyl-pyrazole (DPP) compounds and especially anle138b were found to reduce the aggregation of α-synuclein or Tau protein in vitro as well as in a mouse model of neurodegenerative diseases [1,2]. Direct interaction of the DPPs with the fibrillar structure was identified by fluorescence spectroscopy. Thereby a strong dependence of the fluorescence on the surroundings could be identified [3].

Methods

Stationary and time-resolved emission experiments were performed on DPP compounds substituted by different halogens.

Results

The compounds reveal a pronounced dependence of the fluorescence on the surrounding solvent. In non-polar solvents they show strong emission in the blue part of the spectrum while in polar and proton donating solvents, such as water or acetic acid a dual fluorescence can be observed where a red-shifted emission points to a charge transfer in the excited state with large dipole moment. Non-radiative processes including photochemical reactions are observed for DPP substituted with heavy halogens. Upon binding of anle138b and its derivatives to protein fibrils in aqueous buffer, strong enhancement of the fluorescence at short wavelengths is found.

Conclusion

The investigations of the DPPs in different surroundings lead to a detailed model of the fluorescence characteristics. We propose a model for the binding in fibrils of different proteins, where the DPP is located in a hydrophobic groove independent of the specific sequence of the amino acids.

General significance

These investigations characterize the binding site of the DPP anle138b in protein aggregates and contribute to the understanding of the therapeutic mode of action of this compound.  相似文献   

17.
Although often overshadowed by the motor dysfunction associated with Parkinson's disease (PD), autonomic dysfunction including urinary bladder and bowel dysfunctions are often associated with PD and may precede motoric changes; such autonomic dysfunction may permit early detection and intervention. Lower urinary tract symptoms are common in PD patients and result in significant morbidity. This studies focus on nonmotor symptoms in PD using a transgenic mouse model with overexpression of human α-synuclein (hSNCA), the peptide found in high concentrations in Lewy body neuronal inclusions, the histopathologic hallmark of PD. We examined changes in the physiological, molecular, chemical, and electrical properties of neuronal pathways controlling urinary bladder function in transgenic mice. The results of these studies reveal that autonomic dysfunction (i.e., urinary bladder) can precede motor dysfunction. In addition, mice with hSNCA overexpression in relevant neuronal populations is associated with alterations in expression of neurotransmitter/neuromodulatory molecules (PACAP, VIP, substance P, and neuronal NOS) within neuronal pathways regulating bladder function as well as with increased NGF expression in the urinary bladder. Changes in the electrical and synaptic properties of neurons in the major pelvic ganglia that provide postganglionic innervation to urogenital tissues were not changed as determined with intracellular recording. The urinary bladder dysfunction observed in transgenic mice likely reflects changes in peripheral (i.e., afferent) and/or central micturition pathways or changes in the urinary bladder. SYN-OE mice provide an opportunity to examine early events underlying the molecular and cellular plasticity of autonomic nervous system pathways underlying synucleinopathies.  相似文献   

18.
Environmental toxins and α-synuclein in Parkinson’s disease   总被引:3,自引:0,他引:3  
Liu Y  Yang H 《Molecular neurobiology》2005,31(1-3):273-282
In recent years, environmental influences have been thought to play an important role in Parkinson’s disease (PD). Evidence from epidemiological investigations suggests that environmental factors might take part in the disease process. Intriguingly, most of environmental toxins share the common mechanism of causing mitochondria dysfunction by inhibiting complex I and promoting α-synuclein aggregation, a key factor in PD. Therefore, understanding the mechanism of interactions between α-synuclein and environmental factors could lead to new therapeutic approaches to PD.  相似文献   

19.
Alcoholism has complex etiology and there is evidence for both genetic and environmental factors in its pathophysiology. Chronic, long-term alcohol abuse and alcohol dependence are associated with neuronal loss with the prefrontal cortex being particularly susceptible to neurotoxic damage. This brain region is involved in the development and persistence of alcohol addiction and neurotoxic damage is likely to exacerbate the reinforcing effects of alcohol and may hinder treatment. Understanding the mechanism of alcohol’s neurotoxic effects on the brain and the genetic risk factors associated with alcohol abuse are the focus of current research. Because of its well-established role in neurodegenerative and neuropsychological disorders, and its emerging role in the pathophysiology of addiction, here we review the genetic and epigenetic factors involved in regulating α-synuclein expression and its potential role in the pathophysiology of chronic alcohol abuse. Elucidation of the mechanisms of α-synuclein regulation may prove beneficial in understanding the role of this key synaptic protein in disease and its potential for therapeutic modulation in the treatment of substance use disorders as well as other neurodegenerative diseases.  相似文献   

20.
α-Synuclein is a protein that is intrinsically disordered in vitro and prone to aggregation, particularly at high temperatures. In this work, we examined the ability of curcumin, a compound found in turmeric, to prevent aggregation of the protein. We found strong binding of curcumin to α-synuclein in the hydrophobic non-amyloid-β component region and complete inhibition of oligomers or fibrils. We also found that the reconfiguration rate within the unfolded protein was significantly increased at high temperatures. We conclude that α-synuclein is prone to aggregation because its reconfiguration rate is slow enough to expose hydrophobic residues on the same time scale that bimolecular association occurs. Curcumin rescues the protein from aggregation by increasing the reconfiguration rate into a faster regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号