首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.  相似文献   

2.
Amunugama R  Fishel R 《PloS one》2011,6(8):e23071
RAD51 mediated homologous recombinational repair (HRR) of DNA double-strand breaks (DSBs) is essential to maintain genomic integrity. RAD51 forms a nucleoprotein filament (NPF) that catalyzes the fundamental homologous pairing and strand exchange reaction (recombinase) required for HRR. Based on structural and functional homology with archaeal and yeast RAD51, we have identified the human RAD51 (HsRAD51) subunit interface residues HsRad51(F129) in the Walker A box and HsRad51(H294) in the L2 ssDNA binding region as potentially important participants in salt-induced conformational transitions essential for recombinase activity. We demonstrate that the HsRad51(F129V) and HsRad51(H294V) substitution mutations reduce DNA dependent ATPase activity and are largely defective in the formation of a functional NPF, which ultimately eliminates recombinase catalytic functions. Our data are consistent with the conclusion that the HsRAD51(F129) and HsRAD51(H294) residues are important participants in the cation-induced allosteric activation of HsRAD51.  相似文献   

3.
DNA strand exchange, the central step of homologous recombination, is considered to occur approximately independently of DNA sequence content. However, certain prokaryotic and eukaryotic genomic loci display either an enhanced or reduced frequency of genetic exchange. Here we show that the Homo sapiens DNA strand exchange protein, HsRad51, shows a preference for binding to single-stranded DNA sequences primarily rich in G-residues and poor in A- and C-residues, and that these DNA sequences manifest enhanced HsRad51 protein-dependent homologous pairing. Both of these properties are common to all DNA strand exchange proteins examined thus far. These preferred DNA pairing sequences resemble those found at genetic loci in human cells that cause genomic instability and lead to genetic diseases.  相似文献   

4.
The Rad51 protein, a homologue of the bacterial RecA protein, is an essential factor for both meiotic and mitotic recombination. The N-terminal domain of the human Rad51 protein (HsRad51) directly interacts with DNA. Based on a yeast two-hybrid analysis, it has been reported that the N-terminal region of the Saccharomyces cerevisiae Rad51 protein binds Rad52;S. cerevisiae Rad51 and Rad52 both activate the homologous pairing and strand exchange reactions. Here, we show that the HsRad51 N-terminal region, which corresponds to the Rad52-binding region of ScRad51, does not exhibit strong binding to the human Rad52 protein (HsRad52). To investigate its function, the C-terminal region of HsRad51 was randomly mutagenized. Although this region includes the two segments corresponding to the putative DNA-binding sites of RecA, all seven of the mutants did not decrease, but instead slightly increased, the DNA binding. In contrast, we found that some of these HsRad51 mutations significantly decreased the HsRad52 binding. Therefore, we conclude that these amino acid residues are required for the HsRad51.HsRad52 binding. HsRad52, as well as S. cerevisiae Rad52, promoted homologous pairing between ssDNA and dsDNA, and higher homologous pairing activity was observed in the presence of both HsRad51 and HsRad52 than with either HsRad51 or HsRad52 alone. The HsRad51 F259V mutation, which strongly impaired the HsRad52 binding, decreased the homologous pairing in the presence of both HsRad51 and HsRad52, without affecting the homologous pairing by HsRad51 alone. This result suggests the importance of the HsRad51.HsRad52 interaction in homologous pairing.  相似文献   

5.
We compared strand pairing and gene correction activities between different constructs of oligonucleotides, using homologous supercoiled DNA and eukaryotic nuclear extracts. The RNA-DNA chimeric oligonucleotide was more efficient in strand pairing and gene correction than its DNA-DNA homolog. Single-stranded deoxyoligonucleotides showed similar strand pairing and correction activity to the modified RNA-DNA chimeric oligonucleotides, whereas single-stranded ribooligonucleotides did not show either activity. However, the correlations were not always linear, suggesting that only a fraction of the joint molecules may be processed to cause the final gene correction. Several mammalian extracts with markedly different in vitro activity showed the similar amounts of the joint molecules. These results led us to conclude that strand pairing is a necessary event in gene correction but may not be the rate-limiting step. Furthermore, depletion of HsRad51 protein caused large decreases in both strand-pairing and functional activities, whereas supplementation of HsRad51 produced only a slight increase in the repair activity, indicating that HsRad51 participates in the strand pairing, but subsequent steps define the frequency of gene correction. In addition, we found that the structure and stability of intermediates formed by single-stranded deoxyoligonucleotides and RNA-DNA chimeric oligonucleotides were different, suggesting that they differ in their mechanisms of gene repair.  相似文献   

6.
Human Rad51 (HsRad51) catalyzes the strand exchange reaction, a crucial step in homologous recombination, by forming a filamentous complex with DNA. The structure of this filament is modified by ATP, which is required and hydrolyzed for the reaction. We analyzed the structure and the ATP-promoted conformational change of this filament. We systematically replaced aromatic residues in the protein, one at a time, with tryptophan, a fluorescent probe, and examined its effect on the activities (DNA binding, ATPase, ATP-promoted conformational change, and strand exchange reaction) and the fluorescence changes upon binding of ATP and DNA. Some residues were also replaced with alanine. We thus obtained structural information about various positions of the protein in solution. All the proteins conserved, at least partially, their activities. However, the replacement of histidine at position 294 (H294) and phenylalanine at 129 (F129) affected the ATP-induced conformational change of the DNA-HsRad51 filament, although it did not prevent DNA binding. F129 is considered to be close to the ATP-binding site and to H294 of a neighboring subunit. ATP probably modifies the structure around F129 and affects the subunit/subunit contact around H294 and the structure of the DNA-binding site. The replacement also reduced the DNA-dependent ATPase activity, suggesting that these residues are also involved in the transmission of the allosteric effect of DNA to the ATP-binding site, which is required for the stimulation of ATPase activity by DNA. The fluorescence analyses supported the structural change of the DNA-binding site by ATP and that of the ATP-binding site by DNA. This information will be useful to build a molecular model of the Rad51-DNA complex and to understand the mechanism of activation of Rad51 by ATP and that of the Rad51-promoted strand exchange reaction.  相似文献   

7.
Replication protein A (RPA), a heterotrimeric single-stranded DNA binding protein, is required for recombination, and stimulates homologous pairing and DNA strand exchange promoted in vitro by human recombination protein HsRad51. Co-immunoprecipitation revealed that purified RPA interacts physically with HsRad51, as well as with HsDmc1, the homolog that is expressed specifically in meiosis. The interaction with HsRad51 was mediated by the 70 kDa subunit of RPA, and according to experiments with deletion mutants, this interaction required amino acid residues 169-326. In exponentially growing mammalian cells, 22% of nuclei showed foci of RPA protein and 1-2% showed foci of Rad51. After gamma-irradiation, the percentage of cells with RPA foci increased to approximately 50%, and those with Rad51 foci to 30%. All of the cells with foci of Rad51 had foci of RPA, and in those cells the two proteins co-localized in a high fraction of foci. The interactions of human RPA with Rad51, replication proteins and DNA are suited to the linking of recombination to replication.  相似文献   

8.
S Visp  C Cazaux  C Lesca    M Defais 《Nucleic acids research》1998,26(12):2859-2864
Rad51 proteins share both structural and functional homologies with the bacterial recombinase RecA. The human Rad51 (HsRad51) is able to catalyse strand exchange between homologous DNA molecules in vitro . However the biological functions of Rad51 in mammals are largely unknown. In order to address this question, we have cloned hamster Rad51 cDNA and overexpressed the corresponding protein in CHO cells. We found that 2-3-fold overexpression of the protein stimulated the homologous recombination between integrated genes by 20-fold indicating that Rad51 is a functional and key enzyme of an intrachromosomal recombination pathway. Cells overexpressing Rad51 were resistant to ionizing radiation when irradiated in late S/G2phase of the cell cycle. This suggests that Rad51 participate in the repair of double-strand breaks most likely by homologous recombination involving sister chromatids formed after the S phase.  相似文献   

9.
The Rad52 protein, which is unique to eukaryotes, plays important roles in the Rad51-dependent and the Rad51-independent pathways of DNA recombination. In the present study, we have biochemically characterized the homologous pairing activity of the HsRad52 protein (Homo sapiens Rad52) and found that the presynaptic complex formation with ssDNA is essential in its catalysis of homologous pairing. We have identified an N-terminal fragment (amino acid residues 1-237, HsRad52(1-237)) that is defective in binding to the human Rad51 protein, which catalyzed homologous pairing as efficiently as the wild type HsRad52. Electron microscopic visualization revealed that HsRad52 and HsRad52(1-237) both formed nucleoprotein filaments with single-stranded DNA. These lines of evidence suggest the role of HsRad52 in the homologous pairing step of the Rad51-independent recombination pathway. Our results reveal the striking similarity between HsRad52 and the Escherichia coli RecT protein, which functions in a RecA-independent recombination pathway.  相似文献   

10.
Human Rad51 protein (HsRad51) is a homolog of Escherichia coli RecA protein, and functions in DNA repair and recombination. In higher eukaryotes, Rad51 protein is essential for cell viability. The N-terminal region of HsRad51 is highly conserved among eukaryotic Rad51 proteins but is absent from RecA, suggesting a Rad51-specific function for this region. Here, we have determined the structure of the N-terminal part of HsRad51 by NMR spectroscopy. The N-terminal region forms a compact domain consisting of five short helices, which shares structural similarity with a domain of endonuclease III, a DNA repair enzyme of E. coli. NMR experiments did not support the involvement of the N-terminal domain in HsRad51-HsBrca2 interaction or the self-association of HsRad51 as proposed by previous studies. However, NMR tiration experiments demonstrated a physical interaction of the domain with DNA, and allowed mapping of the DNA binding surface. Mutation analysis showed that the DNA binding surface is essential for double-stranded and single-stranded DNA binding of HsRad51. Our results suggest the presence of a DNA binding site on the outside surface of the HsRad51 filament and provide a possible explanation for the regulation of DNA binding by phosphorylation within the N-terminal domain.  相似文献   

11.
The human RAD51 recombinase possesses DNA pairing and strand exchange activities that are essential for the error-free, homology-directed repair of DNA double-strand breaks. The recombination activities of RAD51 are activated upon its assembly into presynaptic filaments on single-stranded DNA at resected DSB ends. Defects in filament assembly caused by mutations in RAD51 or its regulators such as BRCA2 are associated with human cancer. Here we describe two novel RAD51 missense variants located in the multimerization/BRCA2 binding region of RAD51. F86L is a breast tumor-derived somatic variant that affects the interface between adjacent RAD51 protomers in the presynaptic filament. E258A is a germline variant that maps to the interface region between the N-terminal and RecA homology domains of RAD51. Both variants exhibit abnormal biochemistry including altered DNA strand exchange activity. Both variants inhibit the DNA strand exchange activity of wild-type RAD51, suggesting a mechanism for negative dominance. The inhibitory effect of F86L on wild-type RAD51 is surprising since F86L alone exhibits robust DNA strand exchange activity. Our findings indicate that even DNA strand exchange-proficient variants can have negative functional interactions with wild-type RAD51. Thus heterozygous F86L or E258 mutations in RAD51 could promote genomic instability, and thereby contribute to tumor progression.  相似文献   

12.
Expression of the DNA repair and recombination protein human Rad51 (HsRad51) is increased in transformed cells and in cancer cell lines. In order to study the effects of acute HsRad51 ectopic overexpression on cell proliferation, cell cycle progression, and apoptosis, we generated clones of the human fibrosarcoma cell line HT1080 carrying a HsRad51 transgene under a repressible promoter. The HsRad51-overexpressing cells showed decreased plating efficiency and growth rate in a dose-dependent manner with regard to the degree of overexpression. An accumulation of HsRad51-overexpressing cells in G(2) was observed following release of cells after synchronization with double thymidine block. Moreover, the fraction of apoptotic cells measured by annexin V-FACS increased with the time of HsRad51 overexpression. In the light of these observations, sustained increased levels of HsRad51 may contribute to tumor progression by causing a selection for cells tolerant to the growth-suppressive and apoptosis-inducing effects of acute HsRad51 overexpression.  相似文献   

13.
Rad54 protein is a member of the Swi2/Snf2-like family of DNA-dependent/stimulated ATPases that dissociate and remodel protein complexes on dsDNA. Rad54 functions in the recombinational DNA repair (RAD52) pathway. Here we show that Rad54 protein dissociates Rad51 from nucleoprotein filaments formed on dsDNA. Addition of Rad54 protein overcomes inhibition of DNA strand exchange by Rad51 protein bound to substrate dsDNA. Species preference in the Rad51 dissociation and DNA strand exchange assays underlines the importance of specific Rad54-Rad51 protein interactions. Rad51 protein is unable to release dsDNA upon ATP hydrolysis, leaving it stuck on the heteroduplex DNA product after DNA strand exchange. We suggest that Rad54 protein is involved in the turnover of Rad51-dsDNA filaments.  相似文献   

14.
All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the catalysis of homologous recombination.  相似文献   

15.
Human Rad52 (HsRad52) is a DNA-binding protein (418 residues) that promotes the catalysis of DNA double strand break repair by the Rad51 recombinase. HsRad52 self-associates to form ring-shaped oligomers as well as higher order complexes of these rings. Analysis of the structural and functional organization of protein domains suggests that many of the determinants of DNA binding lie within the N-terminal 85 residues. Crystal structures of two truncation mutants, HsRad52(1-212) and HsRad52(1-209) support the idea that this region makes up an important part of the DNA binding domain. Here, we report the results of saturating alanine scanning mutagenesis of the N-terminal domain of full-length HsRad52 in which we identify residues that are likely involved in direct contact with single-stranded DNA (ssDNA). Our results largely agree with the position of side-chains seen in the crystal structures but also suggest that certain DNA binding and cross-subunit interactions differ between the 11 subunit ring in the crystal structures of the truncation mutant proteins versus the seven subunit ring formed by full-length HsRad52.  相似文献   

16.
Rad51 and Rad54 proteins play a key role in homologous recombination in eukaryotes. Recently, we reported that Ca2+ is required in vitro for human Rad51 protein to form an active nucleoprotein filament that is important for the search of homologous DNA and for DNA strand exchange, two critical steps of homologous recombination. Here we find that Ca2+ is also required for hRad54 protein to effectively stimulate DNA strand exchange activity of hRad51 protein. This finding identifies Ca2+ as a universal cofactor of DNA strand exchange promoted by mammalian homologous recombination proteins in vitro. We further investigated the hRad54-dependent stimulation of DNA strand exchange. The mechanism of stimulation appeared to include specific interaction of hRad54 protein with the hRad51 nucleoprotein filament. Our results show that hRad54 protein significantly stimulates homology-independent coaggregation of dsDNA with the filament, which represents an essential step of the search for homologous DNA. The results obtained indicate that hRad54 protein serves as a dsDNA gateway for the hRad51-ssDNA filament, promoting binding and an ATP hydrolysis-dependent translocation of dsDNA during the search for homologous sequences.  相似文献   

17.
RAD51, an essential eukaryotic DNA recombinase, promotes homologous pairing and strand exchange during homologous recombination and the recombinational repair of double strand breaks. Mutations that up- or down-regulate RAD51 gene expression have been identified in several tumors, suggesting that inappropriate expression of the RAD51 activity may cause tumorigenesis. To identify chemical compounds that affect the RAD51 activity, in the present study, we performed the RAD51-mediated strand exchange assay in the presence of 185 chemical compounds. We found that 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) efficiently inhibited the RAD51-mediated strand exchange. DIDS also inhibited the RAD51-mediated homologous pairing in the absence of RPA. A surface plasmon resonance analysis revealed that DIDS directly binds to RAD51. A gel mobility shift assay showed that DIDS significantly inhibited the DNA-binding activity of RAD51. Therefore, DIDS may bind near the DNA binding site(s) of RAD51 and compete with DNA for RAD51 binding.  相似文献   

18.
The yeast Srs2 helicase removes Rad51 nucleoprotein filaments from single-stranded DNA (ssDNA), preventing DNA strand invasion and exchange by homologous recombination. This activity requires a physical interaction between Srs2 and Rad51, which stimulates ATP turnover in the Rad51 nucleoprotein filament and causes dissociation of Rad51 from ssDNA. Srs2 also possesses a DNA unwinding activity and here we show that assembly of more than one Srs2 molecule on the 3′ ssDNA overhang is required to initiate DNA unwinding. When Rad51 is bound on the double-stranded DNA, its interaction with Srs2 blocks the helicase (DNA unwinding) activity of Srs2. Thus, in different DNA contexts, the physical interaction of Rad51 with Srs2 can either stimulate or inhibit the remodeling functions of Srs2, providing a means for tailoring DNA strand exchange activities to enhance the fidelity of recombination.  相似文献   

19.
Rad52 protein plays a central role in double strand break repair and homologous recombination in Saccharomyces cerevisiae. We have identified a new mechanism by which Rad52 protein stimulates Rad51 protein-promoted DNA strand exchange. This function of Rad52 protein is revealed when subsaturating amounts (relative to the single-stranded DNA concentration) of replication protein-A (RPA) are used. Under these conditions, Rad52 protein is needed for extensive DNA strand exchange. Interestingly, in this new role, Rad52 protein neither acts simply as a single strand DNA-binding protein per se nor, in contrast to its previously identified stimulatory roles, does it require physical interaction with RPA because it can be substituted by the Escherichia coli single strand DNA-binding protein. We propose that Rad52 protein acts by stabilizing the Rad51 presynaptic filament.  相似文献   

20.
The prototypical bacterial RecA protein promotes recombination/repair by catalyzing strand exchange between homologous DNAs. While the mechanism of strand exchange remains enigmatic, ATP-induced cooperativity between RecA protomers is critical for its function. A human RecA homolog, human RAD51 protein (hRAD51), facilitates eukaryotic recombination/repair, although its ability to hydrolyze ATP and/or promote strand exchange appears distinct from the bacterial RecA. We have quantitatively examined the hRAD51 ATPase. The catalytic efficiency (k(cat)/K(m)) of the hRAD51 ATPase was approximately 50-fold lower than the RecA ATPase. Altering the ratio of DNA/hRAD51 and including salts that stimulate DNA strand exchange (ammonium sulfate and spermidine) were found to affect the catalytic efficiency of hRAD51. The average site size of hRAD51 was determined to be approximately 3 nt (bp) for both single-stranded and double-stranded DNA. Importantly, hRAD51 lacks the magnitude of ATP-induced cooperativity that is a hallmark of RecA. Together, these results suggest that hRAD51 may be unable to coordinate ATP hydrolysis between neighboring protomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号