共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interaction between urokinase receptor and vitronectin in cell adhesion and signalling 总被引:1,自引:0,他引:1
The extracellular matrix (ECM) is a complex structural entity surrounding and supporting cells present in all tissue and organs. Cell-matrix interactions play fundamental roles during embryonic development, morphogenesis, tissue homoeostasis, wound healing, and tumourigenesis. Cell-matrix communication is kept in balance by physical contact and by transmembrane integrin receptors providing the dynamic link between the extracellular and intracellular environments through bi-directional signalling. The urokinase-type plasminogen activator receptor (uPAR) is a plasma membrane receptor overexpressed during inflammation and in almost all human cancers. One of its functions is to endorse ECM remodelling through the activation of plasminogen and downstream proteases, including matrix-metalloproteases (MMPs). Beside its role in ECM degradation, uPAR modulates cell-matrix contact through a direct engagement with the ECM component, vitronectin (Vn), and by regulating the activity state of integrins thus promoting or inhibiting integrin signalling and integrin-mediated cell adhesion to other ECM components, like fibronectin and collagen. In this review we have centred our attention on the non-proteolytic function of uPAR as a mediator of cell adhesion and downstream signalling. 相似文献
3.
Sara Dodd Graham A. Place R. L. Hall Stephen E. Harding 《European biophysics journal : EBJ》1998,28(1):38-47
We have used two different approaches to determine hydrodynamic parameters for mucins secreted by guinea-pig tracheal epithelial
cells in primary culture. Cells were cultured under conditions that promote mucous cell differentiation. Secreted mucins were
isolated as the excluded fraction from a Sepharose CL-4B gel filtration column run under strongly dissociating conditions.
Biochemical analysis confirmed the identity of the high molecular weight material as mucins. Analytical ultracentrifugation
was used to study the physical properties of the purified mucins. The weight average molecular mass (M
w
) for three different preparations ranged from 3.3×106 to 4.7×106 g/mol (corresponding to an average structure of 1 – 2 subunits), and the sedimentation coefficient from 25.5 to 35 S. Diffusion
coefficients ranging from 4.5×10–8 to 6.4×10–8 cm2/s were calculated using the Svedberg equation. A polydispersity index (M
z
/M
w
) of ∼1.4 was obtained. Diffusivity values were also determined by image analysis of mucin granule exocytosis captured by
videomicroscopy. The time course of hydration and dissolution of mucin was measured and a relationship is presented which
models both phases, each with first order kinetics, in terms of a maximum radius and rate constants for hydration and dissolution.
A median diffusivity value of 8.05×10–8 cm2/s (inter-quartile range = 1.11×10–7 to 6.08×10–8 cm2/sec) was determined for the hydration phase. For the dissolution phase, a median diffusivity value of 6.98×10–9 cm2/s (inter-quartile range = 1.47×10–8 to 3.25×10–9 cm2/sec) was determined. These values were compared with the macromolecular diffusion coefficients (D
20,w
) obtained by analytical ultracentrifugation. When differences in temperature and viscosity were taken into account, the resulting
D
37,g
was within the range of diffusivity values for dissolution. Our findings show that the physicochemical properties of mucins
secreted by cultured guinea-pig tracheal epithelial cells are similar to those of mucins of the single or double subunit type
purified from respiratory mucus or sputum. These data also suggest that measurement of the diffusivity of dissolution may
be a useful means to estimate the diffusion coefficient of mucins in mucus gel at the time of exocytosis from a secretory
cell.
Received: 10 March 1998 / Accepted: 27 March 1998 相似文献
4.
5.
Damaging and protective cell signalling in the untargeted effects of ionizing radiation 总被引:6,自引:0,他引:6
The major adverse consequences of radiation exposures are attributed to DNA damage in irradiated cells that has not been correctly restored by metabolic repair processes. However, the dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells either directly or via media transfer (radiation-induced genomic instability) or in cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by a number of delayed responses including chromosomal abnormalities, gene mutations and cell death. Bystander effects include increases or decreases in damage-inducible and stress-related proteins, increases or decreases in reactive oxygen and nitrogen species, cell death or cell proliferation, cell differentiation, radioadaptation, induction of mutations and chromosome aberrations and chromosomal instability. The phenotypic expression of untargeted effects and the potential consequences of these effects in tissues reflect a balance between the type of bystander signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. Thus, in addition to targeted effects of damage induced directly in cells by irradiation, a variety of untargeted effects may also make important short-term and long-term contributions to determining overall outcome after radiation exposures. 相似文献
6.
Advancing knowledge regarding the cellular mechanisms of intestinal inflammation has led to a better understanding of the disease pathology in patients with inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis. It has become clear from numerous studies that enteric bacteria are a critical component in the development and prevention/treatment of chronic intestinal inflammation. An emerging new paradigm suggests that changes in the homeostasis of bacteria- and host-derived signal transduction at the intestinal epithelial cell (IEC) level may lead to a break in barrier function and the development of adaptive immune disturbances. The functional loss of anti-inflammatory host-derived signals in the gut including the immunosuppressive cytokines Interleukin 10 (IL-10) and transforming growth factor (TGF)-beta are of high relevance to the pathogenesis of IBD. The development of analytical tools including two-dimensional (2D) high-resolution protein separation techniques and peptide mass fingerprinting via high-sensitivity mass-spectrometers (MS) allows the quantitative assessment of protein expression changes in disease-relevant cell types. By using these advanced methods, the characterization of the epithelial cell proteome from murine models of experimental colitis and human IBD patients identified novel disease-related mechanisms with respect to the regulation of the glucose-regulated endoplasmic reticulum stress response protein 78 (grp-78). In conclusion, the identification and functional analysis of differentially expressed proteins in purified intestinal target cell types will help to add important insights to the understanding of the molecular pathogenesis of these immune-mediated chronic intestinal disorders. 相似文献
7.
The developments in biochemistry and molecular biology over the past 30 years have produced an impressive parts list of cellular components. It has become increasingly clear that we need to understand how components come together to form systems. One area where this approach has been growing is cell signalling research. Here, instead of focusing on individual or small groups of signalling proteins, researchers are now using a more holistic perspective. This approach attempts to view how many components are working together in concert to process information and to orchestrate cellular phenotypic changes. Additionally, the advancements in experimental techniques to measure and visualize many cellular components at once gradually grow in diversity and accuracy. The multivariate data, produced by experiments, introduce new and exciting challenges for computational biologists, who develop models of cellular systems made up of interacting cellular components. The integration of high-throughput experimental results and information from legacy literature is expected to produce computational models that would rapidly enhance our understanding of the detail workings of mammalian cells. 相似文献
8.
9.
Koenig U Sommergruber W Lippens S 《Biochemical and biophysical research communications》2005,335(2):309-313
Cysteine-dependent aspartate-specific proteases (caspases) are the cellular executors of apoptosis. Caspase-14 is the most divergent member of the family of mammalian caspases and displays a variety of unique characteristics. It is expressed in a limited number of tissues and has the shortest amino acid sequence within the caspase protein family. During induction of apoptosis, it is not processed, whereas terminal differentiation in skin leads to cleavage of caspase-14. Here we show that 40% of lung squamous cell carcinomas, 22% of breast cancers, and about 80% of cervical carcinomas express caspase-14. Immunohistochemistry reveals that caspase-14 is localized in areas of ongoing differentiation close to necrotic sites but is not strictly associated with the differentiation markers keratin-1/-10. Caspase-14 is neither mutated nor alternatively spliced in the tumors analyzed. Furthermore, caspase-14 is not processed into a small and large subunit, a process critical for the proteolytic activation of known effector caspases. We conclude that conditions exist in tumors leading to re-expression of this normally silent gene. 相似文献
10.
11.
Embryonic stem cell markers expression in cancers 总被引:1,自引:0,他引:1
Matthieu Schoenhals John De Vos Dirk Hose Bernard Klein 《Biochemical and biophysical research communications》2009,383(2):157-162
12.
13.
14.
Glutamate in plants: metabolism, regulation, and signalling 总被引:10,自引:0,他引:10
Glutamate occupies a central position in amino acid metabolism in plants. The acidic amino acid is formed by the action of glutamate synthase, utilizing glutamine and 2-oxoglutarate. However, glutamate is also the substrate for the synthesis of glutamine from ammonia, catalysed by glutamine synthetase. The alpha-amino group of glutamate may be transferred to other amino acids by the action of a wide range of multispecific aminotransferases. In addition, both the carbon skeleton and alpha-amino group of glutamate form the basis for the synthesis of gamma-aminobutyric acid, arginine, and proline. Finally, glutamate may be deaminated by glutamate dehydrogenase to form ammonia and 2-oxoglutarate. The possibility that the cellular concentrations of glutamate within the plant are homeostatically regulated by the combined action of these pathways is examined. Evidence that the well-known signalling properties of glutamate in animals may also extend to the plant kingdom is reviewed. The existence in plants of glutamate-activated ion channels and their possible relationship to the GLR gene family that is homologous to ionotropic glutamate receptors (iGluRs) in animals are discussed. Glutamate signalling is examined from an evolutionary perspective, and the roles it might play in plants, both in endogenous signalling pathways and in determining the capacity of the root to respond to sources of organic N in the soil, are considered. 相似文献
15.
16.
Rocco C. Iannello Julia C. Young Ismail Kola 《Molecular reproduction and development》1994,39(2):194-199
Precise temporal and tissue-specific expression of genes during spermatocyte differentiation is crucial for the formation of functional spermatozoa. However, the mechanisms that regulate gene expression during spermatogenesis are poorly understood. One testisspecific gene, Pdha-2, is beginning to emerge as a potentially important model for the study of these events. This review focuses on our current understanding of the expression and regulation of Pdha-2 during spermatogenesis. © 1994 Wiley-Liss, Inc. 相似文献
17.
18.
19.
Neuroplastin (Np) is a glycoprotein that belongs to the immunoglobulin superfamily of cell adhesion molecules. It exists in two isoforms, Np55 and Np65, named according to their apparent molecular weights. Neuroplastins were first identified as synapse-specific proteins, but subsequent findings have shown that Np65 is indeed expressed only in the brain, whereas Np55 is found in wide range of tissues. Since their discovery, the knowledge of Nps expanded, implicating them in various processes, including neuronal differentiation and synaptic plasticity. Here, we will review the Np structure and mechanisms involved in Np signaling and discuss the functions of Nps in the nervous system. 相似文献
20.
Emilie Bruyère Nicolas Jonckheere Frédéric Frénois Christophe Mariette Isabelle Van Seuningen 《Biochemical and biophysical research communications》2011,(2):325
MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression. 相似文献