首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of binding of glycolytic enzymes to the particulate fraction of homogenates was measured in bovine psoas muscle before and after electrical stimulation. In association with an accelerated glycolytic rate on stimulation, there was a significant increase in the binding of certain glycolytic enzymes, the most notable of which were phosphofructokinase, aldolase, glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase. From the known association of glycolytic enzymes with the I-band of muscle it is proposed that electrical stimulation of anaerobic muscle increases enzyme binding to actin filaments. Calculations of the extent of enzyme binding suggest that significant amounts of enzyme protein, particularly aldolase and glyceraldehyde 3-phosphate dehydrogenase, are associated with the actin filaments. The results also imply that kinetic parameters derived from considerations of the enzyme activity in the soluble state may not have direct application to the situation in the muscle fibre, particularly during accelerated glycolysis.  相似文献   

2.
The interaction of rabbit skeletal muscle phosphofructokinase (PFK) with actin is characterized in terms of the binding of PFK to actin in the presence and absence of tropomyosin and troponin, the effect of PFK on actin polymerization, and the involvement of adenylates in the binding of PFK to actin. The thin filament proteins, tropomyosin and troponin, are associated with skeletal muscle actin and reduce the binding of PFK to actin, thus influencing the probable distribution of PFK in skeletal muscle. The binding of PFK to actin is inhibited by ATP and ADP but not by fructose 6-phosphate or fructose 2,6-bisphosphate. This specific inhibition, plus evidence from fluorescence quenching and photoaffinity labeling, suggests that actin binds at the adenosine activation sites of PFK. Light scattering measurements used to monitor actin polymerization indicate that PFK dramatically increases the level of light scattering produced by the polymerization of actin, indicative of a superaggregate of PFK and actin. PFK inhibits the polymerization of actin when polymerization is induced by low concentrations of added salts. Although PFK binds to actin with high affinity, it seems to have little effect on the high shear viscosity of actin filaments.  相似文献   

3.
Actin was isolated from erythrocyte ghosts. It is identical to muscle actin in its molecular weight, net charge, ability to polymerize into filaments with the double helical morphology, and its decoration with heavy meromyosin (HMM). when erythrocyte ghosts are incubated in 0.1 mM EDTA, actin and spectrin are solubilized. Spectrin has a larger molecular weight than muscle myosin. When salt is added to the EDTA extract, a branching filamentous polymer is formed. However, when muscle actin and the EDTA extract are mixed together in the presence of salt, the viscosity achieved is less than the viscosity of the solution if spectrin is omitted. Thus, spectrin seems to inhibit the polymerization of actin. If the actin is already polymerized, the addition of spectrin increases the viscosity of the solution, presumably by cross-linking the actin filaments. The addition of HMM of trypsin to erythrocyte ghosts results in filament formation in situ. These agents apparently act by detaching erythrocyte actin from spectrin, thereby allowing the polmerization of one or both proteins to occur. Since filaments are not present in untreated erythrocyte ghosts, we conclude that erythrocyte actin and spectrin associate to form an anastomosing network beneath the erythrocyte membrane. This network presumably functions in restricting the lateral movement of membrane-penetrating particles.  相似文献   

4.
6-Phosphofructo-1-kinase (PFK) and aldolase are two sequential glycolytic enzymes that associate forming heterotetramers containing a dimer of each enzyme. Although free PFK dimers present a negligible activity, once associated to aldolase these dimers are as active as the fully active tetrameric conformation of the enzyme. Here we show that aldolase-associated PFK dimers are not inhibited by clotrimazole, an antifungal azole derivative proposed as an antineoplastic drug due to its inhibitory effects on PFK. In the presence of aldolase, PFK is not modulated by its allosteric activators, ADP and fructose-2,6-bisphosphate, but is still inhibited by citrate and lactate. The association between the two enzymes also results on the twofold stimulation of aldolase maximal velocity and affinity for its substrate. These results suggest that the association between PFK and aldolase confers catalytic advantage for both enzymes and may contribute to the channeling of the glycolytic metabolism.  相似文献   

5.
The association between purified glycolytic enzymes and filamentous actin from rabbit muscle has been studied by counter-current distribution. The co-distribution of a glycolytic enzyme and filamentous actin leads to a significant change in the counter-current distribution profile of the enzyme whereas that of actin is unaffected. The changes in the distribution profiles clearly demonstrated that all glycolytic enzymes studied, though to different extents, bind to filamentous actin. The aqueous two-phase system used for the studies contained dextran, poly(ethyleneglycol) and 150 millimolal potassium phosphate buffer, pH 7.0. Since the ionic strength of the two-phase system is determined mainly by the buffer, the glycolytic enzymes are evidently able to associate with filamentous actin, at least in the presence of neutral polymers, at ionic strengths comparable to or higher than those assumed to prevail in vivo.  相似文献   

6.
The cellular distribution of free and bound glycolytic enzymes in vivo was estimated by means of a model based on previously determined association constants for individual binding interactions and in vivo protein concentrations. The calculations revealed that a significant proportion of the enzymes would be either associated with F-actin, or bound in binary enzyme-enzyme complexes in vivo. An analysis of the relative concentration, and relative activity, of F-actin-bound enzymes suggested that a complete glycolytic complex, composed of all enzymatic steps from phosphofructokinase (PFK) to lactate dehydrogenase (LDH) does not exist. This was indicated by a very low concentration of F-actin-associated phosphoglycerate kinase (PGK) and by a very low activity of F-actin bound aldolase and PGK; this model showed that aldolase and PGK would be absent from any F-actin bound complex. An analysis of soluble enzyme-enzyme associations indicated that formation of binary enzyme complexes may lead to an increased overall flux through glyceraldehyde 3-phosphate dehydrogenase and LDH, but would serve to decrease flux through PFK and aldolase. A 1.4-fold activation of PFK, which occurs when the soluble enzyme binds to F-actin, suggested that reversible binding of PFK to F-actin may represent a novel cellular mechanism for controlling glycolytic flux during periods of increased metabolic demand by controlling the key regulatory enzyme of glycolysis.  相似文献   

7.
Vacuolar H(+)-ATPase (V-ATPase) binds actin filaments with high affinity (K(d) = 55 nm; Lee, B. S., Gluck, S. L., and Holliday, L. S. (1999) J. Biol. Chem. 274, 29164-29171). We have proposed that this interaction is an important mechanism controlling transport of V-ATPase from the cytoplasm to the plasma membrane of osteoclasts. Here we show that both the B1 (kidney) and B2 (brain) isoforms of the B subunit of V-ATPase contain a microfilament binding site in their amino-terminal domain. In pelleting assays containing actin filaments and partially disrupted V-ATPase, B subunits were found in greater abundance in actin pellets than were other V-ATPase subunits, suggesting that the B subunit contained an F-actin binding site. In overlay assays, biotinylated actin filaments also bound to the B subunit. A fusion protein containing the amino-terminal half of B1 subunit bound actin filaments tightly, but fusion proteins containing the carboxyl-terminal half of B1 subunit, or the full-length E subunit, did not bind F-actin. Fusion proteins containing the amino-terminal 106 amino acids of the B1 isoform or the amino-terminal 112 amino acids of the B2 isoform bound filamentous actin with K(d) values of 130 and 190 nm, respectively, and approached saturation at 1 mol of fusion protein/mol of filamentous actin. The B1 and B2 amino-terminal fusion proteins competed with V-ATPase for binding to filamentous actin. In summary, binding sites for F-actin are present in the amino-terminal domains of both isoforms of the B subunit, and likely are responsible for the interaction between V-ATPase and actin filaments in vivo.  相似文献   

8.
The association of actin filaments with the plasma membrane maintains cell shape and adhesion. Here, we show that the plasma membrane ion exchanger NHE1 acts as an anchor for actin filaments to control the integrity of the cortical cytoskeleton. This occurs through a previously unrecognized structural link between NHE1 and the actin binding proteins ezrin, radixin, and moesin (ERM). NHE1 and ERM proteins associate directly and colocalize in lamellipodia. Fibroblasts expressing NHE1 with mutations that disrupt ERM binding, but not ion translocation, have impaired organization of focal adhesions and actin stress fibers, and an irregular cell shape. We propose a structural role for NHE1 in regulating the cortical cytoskeleton that is independent of its function as an ion exchanger.  相似文献   

9.
Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (~75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled.  相似文献   

10.
Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as “label transfer” that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and β-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction.  相似文献   

11.
A reappraisal of the binding of cytosolic enzymes to erythrocyte membranes   总被引:3,自引:0,他引:3  
Several cytosolic proteins have been shown to be associated with hypotonic erythrocyte ghosts via electrostatic interactions with the anion transport band 3 protein. This article considers the problems of demonstrating binding under physiological conditions and reviews the evidence for the relevance of enzyme binding to the membrane for the regulation of glycolysis. The hypotheses for the existence of topological and sequential multienzyme complexes of the glycolytic enzymes in erythrocytes are also discussed.  相似文献   

12.
Usenik A  Legiša M 《PloS one》2010,5(11):e15447
As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1) level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A) as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V) of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.  相似文献   

13.
Skeletal muscle phosphofructokinase (PFK) purified from the thornback ray is rapidly inactivated by urea concentrations as low as 50 mM at pH values below 7.0. Urea-induced loss of PFK activity is not offset by trimethylamine-N-oxide. Protection against urea-inactivation in vivo, where urea concentration may approach 0.5 M, may be due to two effects. Filamentous (F) actin and muscle thin filaments moderately reduce the urea-induced loss of PFK activity. The binding of PFK to F-actin and to thin filaments is shown by ultracentrifugation experiments. PFK activity in vivo also may be stabilized in this species by the formation of a particulate enzyme form which is totally resistant to inactivation by physiological concentrations of urea.  相似文献   

14.
细胞内肌动蛋白(actin)通过与actin结合蛋白(actin binding proteins,ABPs)相互作用,形成以F-actin为基础多种ABPs参与装配的高度有序的超分子聚合结构,行使各种重要生理功能。在体外聚合条件下,不存在F-actin稳定剂时纯化的actin主要通过自装配形成大尺度的聚集堆积结构;这种表观无序的结构体系由于被认为不具备细胞功能活性而受到忽视。利用激光原子力显微镜(atomic force microscope,AFM)和透射电子显微镜(transmission electron microscope,TEM)技术,对actin体外通过自装配过程形成的大尺度聚集结构进行了细致的观察和分析。研究发现,actin在体外通过自装配过程除了形成无序的蛋白堆积物之外,还能够聚合形成复杂的离散结构,包括树状分支的纤维丛、无规卷曲的纤维簇以及具有不同直径的长纤维等;这些大尺度纤维复合物明显不同于在ABPs或过量F-actin稳定剂参与下形成的由单根微丝和微丝束构成的聚合结构。表明无ABPs或F-actin稳定剂存在的情况下,体外聚合的F-actin在一定条件下可进一步聚集缠绕形成复杂的纤维结构或无序的蛋白堆积物。事实上,actin自装配过程反映了其固有的聚合热力学特性,深入探索将有助于理解ABPs在体内actin超分子聚合结构体系装配中的调控作用及其分子机制。  相似文献   

15.
Myxococcus xanthus is a Gram-negative bacterium that exhibits a communal lifestyle during vegetative growth and multicellular development, forming fruiting bodies filled with spores. It contains at least 13 eukaryotic-like protein Ser/Thr kinases (PSTKs from Pkn1 to Pkn13). In the present report, we demonstrate that Pkn4, the gene located 18 bp downstream of the gene for 6-phosphofructokinase (PFK), is a PSTK for M. xanthus PFK (Mx-PFK), the key regulatory enzyme in glycolysis. Both Pkn4 and Mx-PFK were expressed in Escherichia coli and purified. Mx-PFK was found to be phosphorylated by Pkn4 at Thr-226, which is presumed to be located in the allosteric effector site of the PFK. The phosphorylation of Mx-PFK enhanced its activity 2.7-fold, indicating that Pkn4 plays an important role in glucose metabolism. Although PFKs from other organisms are known to be tetrameric enzymes, Mx-PFK is composed of an octamer and is dissociated to tetramers in the presence of phosphoenolpyruvate (PEP), an allosteric inhibitor for PFK. Furthermore, phosphorylation of PFK by Pkn4 is almost completely inhibited by PEP. Mx-PFK is associated with the regulatory domain of Pkn4, and this association is inhibited by PEP. This is the first demonstration that a prokaryotic PFK is regulated by phosphorylation by PSTK in prokaryotes.  相似文献   

16.
The random diffusion mechanism is usually assumed in analyzing the energetics of specific pathways despite the findings that enzymes associate with each other and (or) with various membranous and contractile elements of the cell. Successive glycolytic enzymes have been shown to associate in the cytosol as enzyme complexes or bind to the thin filaments. Furthermore, the degree of glycolytic enzyme interactions have been shown to change with altered rates of carbon flux through the pathway. In particular, the proportions of aldolase, phosphofructokinase, and glyceraldehyde phosphate dehydrogenase bound to the contractile proteins have been found to increase with increased rates of glycolysis. In addition, decreasing pH and ionic strength are also associated with an increase in glycolytic enzyme interactions. The kinetics displayed by interacting enzymes generally serve to enhance their catalytic efficiencies. The associations of the glycolytic enzymes serve to enhance metabolite transfer rates, increase the local concentrations of intermediates, and provide for regulation of activity via effectors. Therefore these interactions provide an additional mechanism for regulating glycolytic flux in skeletal muscle.  相似文献   

17.
For a long period lactate was considered as a dead-end product of glycolysis in many cells and its accumulation correlated with acidosis and cellular and tissue damage. At present, the role of lactate in several physiological processes has been investigated based on its properties as an energy source, a signalling molecule and as essential for tissue repair. It is noteworthy that lactate accumulation alters glycolytic flux independently from medium acidification, thereby this compound can regulate glucose metabolism within cells. PFK (6-phosphofructo-1-kinase) is the key regulatory glycolytic enzyme which is regulated by diverse molecules and signals. PFK activity is directly correlated with cellular glucose consumption. The present study shows the property of lactate to down-regulate PFK activity in a specific manner which is not dependent on acidification of the medium. Lactate reduces the affinity of the enzyme for its substrates, ATP and fructose 6-phosphate, as well as reducing the affinity for ATP at its allosteric inhibitory site at the enzyme. Moreover, we demonstrated that lactate inhibits PFK favouring the dissociation of enzyme active tetramers into less active dimers. This effect can be prevented by tetramer-stabilizing conditions such as the presence of fructose 2,6-bisphosphate, the binding of PFK to f-actin and phosphorylation of the enzyme by protein kinase A. In conclusion, our results support evidence that lactate regulates the glycolytic flux through modulating PFK due to its effects on the enzyme quaternary structure.  相似文献   

18.
Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly alpha-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.  相似文献   

19.
The 14-3-3 protein family plays critical regulatory roles in signaling pathways in cell division and apoptosis. 14-3-3gamma is mainly expressed in brain. Using primary cultures of cerebral cortical astrocytes, we investigated the relationships between 14-3-3gamma proteins and actin in astrocytes in cell division and under ischemia. Our results showed that endogenous 14-3-3gamma proteins in immature astrocytes appeared filamentous and co-localized with filamentous actin (F-actin). During certain stages of mitosis, 14-3-3gamma proteins first aggregated and then formed a ring-like structure that surrounded the daughter nuclei and enclosed the F-actin. In 4-week-old cultures of astrocytes, 14-3-3gamma proteins appeared as punctate aggregates in the cytoplasm. Under ischemia, 14-3-3gamma proteins formed filamentous structures and were closely associated with F-actin in surviving astrocytes. However, in apoptotic astrocytes, the intensity of immunostaining of 14-3-3gamma proteins in the cytoplasm decreased. The proteins aggregated around the nucleus and dissociated from the actin filaments. Reciprocal co-immunoprecipitations demonstrated that endogenous 14-3-3gamma proteins bound to detergent-soluble actin and the level of binding increased after 4h of ischemia. As actin is a critical structural protein heavily involved in cell division and apoptotic death, our findings suggest that 14-3-3gamma proteins play a role in cytoskeletal function during the process of cell division and apoptosis in astrocytes in association with actin.  相似文献   

20.
Although the actin cytoskeleton has been implicated in vesicle trafficking, docking and fusion, its site of action and relation to the Ca(2+)-mediated activation of the docking and fusion machinery have not been elucidated. In this study, we examined the role of actin filaments in regulated exocytosis by introducing highly specific actin monomer- binding proteins, the beta-thymosins or a gelsolin fragment, into streptolysin O-permeabilized pancreatic acinar cells. These proteins had stimulatory and inhibitory effects. Low concentrations elicited rapid and robust exocytosis with a profile comparable to the initial phase of regulated exocytosis, but without raising [Ca2+], and even when [Ca2+] was clamped at low levels by EGTA. No additional cofactors were required. Direct visualization and quantitation of actin filaments showed that beta-thymosin, like agonists, induced actin depolymerization at the apical membrane where exocytosis occurs. Blocking actin depolymerization by phalloidin or neutralizing beta- thymosin by complexing with exogenous actin prevented exocytosis. These findings show that the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis. In addition, actin filaments also have a positive role. High concentrations of the actin depolymerizing proteins inhibited all phases of exocytosis. The inhibition overrides stimulation by agonists and all downstream effectors tested, suggesting that exocytosis cannot occur without a minimal actin cytoskeletal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号