首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most breast cancers exhibit brisk lipogenesis, and require it for growth. S14 is a lipogenesis-related nuclear protein that is overexpressed in most breast cancers. Sterol response element-binding protein-1c (SREBP-1c) is required for induction of lipogenesis-related genes, including S14 and fatty acid synthase (FAS), in hepatocytes, and correlation of SREBP-1c and FAS expression suggested that SREBP-1c drives lipogenesis in tumors as well. We directly tested the hypothesis that SREBP-1c drives S14 expression and mediates lipogenic effects of progestin in T47D breast cancer cells. Dominant-negative SREBP-1c inhibited induction of S14 and FAS mRNAs by progestin, while active SREBP-1c induced without hormone and superinduced in its presence. Changes in S14 mRNA were reflected in protein levels. A lag time and lack of progestin response elements indicated that S14 and FAS gene activation by progestin is indirect. Knockdown of S14 reduced, whereas overexpression stimulated, T47D cell growth, while nonlipogenic MCF10a mammary epithelial cells were not growth-inhibited. These data directly demonstrate that SREBP-1c drives S14 gene expression in breast cancer cells, and progestin magnifies that effect via an indirect mechanism. This supports the prediction, based on S14 gene amplification and overexpression in breast tumors, that S14 augments breast cancer cell growth and survival.  相似文献   

2.
3.
4.
5.
为了探究脂肪酸对罗非鱼(Oreochromis niloticus)脂肪细胞增殖和分化的影响, 在体外培养罗非鱼前脂肪细胞, 并在其增殖和分化过程中分别添加100 μmol/L的棕榈酸(Palmitic Acid, PA)、油酸(Oleic Acid, OA), 亚油酸(Linoleic Acid, LA)和α-亚麻酸(α-Linolenic Acid, LNA)进行处理。使用SRB (Sulforhodamine B)染色法和油红O染色法检测外源性脂肪酸对脂肪细胞增殖和分化的影响, Real-time qPCR检测增殖分化过程中基因表达情况。结果显示, 在培养8d时, 外源添加的不饱和脂肪酸可以促进罗非鱼前脂肪细胞增殖, 并且增殖过程中增殖相关基因(c-fos和c-myc)、脂解相关基因(ATGL)和脂合成相关基因(PPARγ和CD36)的表达与对照组相比均显著提高(P<0.05)。此外, 外源脂肪酸的加入可以抑制脂肪细胞的分化。棕榈酸的加入使得脂肪细胞中产生的脂滴面积较少, 数量较多; 分化过程中细胞的β氧化相关基因(CPT-1a)与对照组相比显著上调, 而脂解相关基因(ATGL)则显著下调。外源性不饱和脂肪酸可以促进罗非鱼前脂肪增殖, 而饱和脂肪酸主要抑制细胞分化。在增殖过程中, 过量的脂肪酸先通过脂合成储存在胞内, 再借助脂解等途径进行代谢, 从而帮助细胞适应环境中高浓度的脂肪酸。而在分化过程中, 添加外源脂肪酸, 可能通过抑制脂肪细胞内的脂合成和脂解的发生, 同时促进β氧化等方式来抑制脂肪细胞分化。  相似文献   

6.
7.
In this study, we investigate the role of liver X receptor alpha (LXR alpha) in lipogenesis in geese in order to understand the differences in hepatic steatosis mechanisms between mammals and waterfowl. Primary goose hepatocytes were isolated and treated with the LXR alpha agonist T0901317. Triglyceride (TG) accumulation, acetyl-CoA carboxylase alpha (ACC alpha) and fatty acid synthase (FAS) activities, and gene expression levels of LXR alpha, sterol regulatory element-binding proteins-1 (SREBP-1), FAS, ACC alpha and lipoprotein lipase (LPL) were measured in primary hepatocytes. We found a dose-dependent up-regulation of TG accumulation, ACC, and FAS activities and the mRNA levels of LXR alpha, SREBP-1, FAS, ACC alpha, and LPL genes in the presence of To-901317. We also found that binding of nuclear SREBP-1 to ACC alpha SRE sequence was induced by To-901317 (P < 0.05). In conclusion, LXR alpha is involved in the induction of the lipogenic pathway through activation of SREBP-1 and its target genes in goose primary hepatocytes.  相似文献   

8.
As the primary and preferred energy source of normal colonic epithelial cells, fatty acids may play a unique role in the differentiation and physiology of these cells. We have shown that expression levels of COXIII, a mitochondrial gene encoding one of the 13 subunits of cytochrome c oxidase, are abnormally low in colon tumors and colonic tissue at genetic risk for developing tumors but increase following in vitro treatment of HT29 human colonic adenocarcinoma cells with the fatty acid butyrate. The present studies investigate the specificity of fatty acids in effecting cytochrome c oxidase subunit expression and enzymatic activity in HT29 cells. The data demonstrate that, depending upon their chain length, metabolizable unbranched fatty acids increase expression of two subunits encoded by mitochondrial genes (I and III) and enhance cytochrome c oxidase activity. However, none of the fatty acids had an effect on expression of two subunits encoded by nuclear genes (IV and Va). These findings suggest that the low levels of COXIII expression exhibited in colonic tumors may represent a limiting factor in the assembly of functional cytochrome c oxidase and contribute to the depressed enzyme activity reported in these tumors. By elevating expression of subunits I and III and enzymatic activity, fatty acids may enhance the potential for cellular respiration. The more differentiated phenotype which is reported in colorectal carcinoma cell lines treated with fatty acids in vitro may be, therefore, associated with correction of metabolic abnormalities in transformed cells.  相似文献   

9.
Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.  相似文献   

10.
Sterol regulatory element-binding proteins (SREBPs) activate genes of cholesterol and fatty acid metabolism. In each case, a ubiquitous co-regulatory factor that binds to a neighboring recognition site is also required for efficient promoter activation. It is likely that gene- and pathway-specific regulation by the separate SREBP isoforms is dependent on subtle differences in how the individual proteins function with specific co-regulators to activate gene expression. In the studies reported here we extend these observations significantly by demonstrating that SREBPs are involved in both sterol regulation and carbohydrate activation of the FAS promoter. We also demonstrate that the previously implicated Sp1 site is largely dispensable for sterol regulation in established cultured cells, whereas a CCAAT-binding factor/nuclear factor Y is critically important. In contrast, carbohydrate activation of the FAS promoter in primary hepatocytes is dependent upon SREBP and both the Sp1 and CCAAT-binding factor/nuclear factor Y sites. Because 1c is the predominant SREBP isoform expressed in hepatocytes and 1a is more abundant in sterol depleted established cell lines, this suggests that the different SREBP isoforms utilize distinct co-regulatory factors to activate target gene expression.  相似文献   

11.
Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy.  相似文献   

12.
Studies have shown linoleate could not only promote cell viability but also affect lipid metabolism in mammals. However, to what degree these effects are mediated by steatosis in goose primary hepatocytes is unknown. In this study, the effect of linoleate on the lipid metabolic homeostasis pathway was determined. We measured the mRNA levels of genes involved in triglyceride synthesis, lipid deposition, β-oxidation, and assembly and secretion of VLDL-TGs in goose (Anser cygnoides) primary hepatocytes. Linoleate significantly increased goose hepatocyte viability, and linoleate at 0.125 mM, 0.25 mM, 0.5 mM and 1.0 mM all showed a significant effect on TG accumulation. However, with increasing linoleate concentrations, the extracellular TG concentration and extracellular VLDL gradually decreased. DGAT1, DGAT2, PPARα, PPARγ, FoxO1, MTP, PLIN and CPT-1 mRNA was detected by real-time PCR. With increasing linoleate concentrations, the changes in DGAT1, DGAT2, PPARα and CPT-1 gene expression, which regulates hepatic TG synthesis and fatty acid oxidation, first increased and then decreased. Additionally, FoxO1 and MTP gene expression was reduced with increasing linoleate concentrations, and the change in PLIN gene expression was increased at all concentrations, similar to the regulation of intracellular TG accumulation. In conclusion, linoleate regulated TG accumulation and increased hepatocyte viability. The data suggest that linoleate does promote goose hepatocyte viability and steatosis, which may up-regulate TG synthesis-relevant gene expression, suppress assembly and secretion of VLDL-TGs, and increase fatty acid oxidation properly to function of goose primary hepatocytes.  相似文献   

13.
14.
15.
Fatty acids are generally considered as agonists for peroxisome proliferator-activated receptors (PPARs). Fatty acids have been shown to bind to and transactivate PPARs; it is not known whether fatty acids act as generalized agonists for PPARs in different cell types, and thus, stimulate the expression of PPAR-regulated target genes. Here, we investigated the potency of unsaturated fatty acids on transactivation of PPRE, DNA-binding activity of PPARs, and the expression of a PPAR-regulated gene product, CD36. Docosahexaenoic acid (DHA) suppressed the basal and PPAR agonist-induced transactivation of PPRE, and DNA binding of PPARs in colon tumor cells (HCT116). The suppression of PPAR transactivation by DHA leads to reduced expression of CD36 in HCT116 cells and human monocytic cells (THP-1) as determined by promoter reporter gene assay and flow cytometric analysis. Our results demonstrate that DHA and other unsaturated fatty acids act as antagonists instead of agonists for transactivation of PPRE and PPAR-regulated gene expression in the cell lines tested. These results suggest that PPAR-mediated gene expression and cellular responses can be dynamically modulated by different types of dietary fatty acids consumed.  相似文献   

16.
目的探讨DHA对肝X受体激动剂T0901317诱导的HepG2细胞甘油三酯积聚的影响。方法体外培养HepG2细胞,以50μmol/LDHA、10μmol/LT0901317分别处理细胞以及50μmloL/LDHA和10μmol/LT0901317共同处理细胞48h。油红0染色观察细胞内脂质沉积;氯仿-甲醇抽提细胞总脂质,酶法定量检测细胞甘油三酯含量;实时定量PCR检测与脂肪酸代谢相关基因如SREBP-1c、FAS、SCD-1、PPARa和CD36的mRNA水平。结果与对照组相比,10μmol/LT0901317处理48h后,HepG2细胞内的油红O染色脂滴增多,甘油二酯浓度升高了50%;脂肪酸合成基因:SREBP-1c、FAS和SCD-1及脂肪酸吸收基因CD36的mRNA水平分别升高了9.9、5.2、2.2和1.5倍,而脂肪酸降解基因PPARoz的mRNA无变化。DHA与T0901317共同处理的HepG2细胞内脂滴明显减少;甘油三酯含量比70901317处理组降低了15%:SREBP—1c、FAS、SCD-1和CD36的mRNA水平比T0901317处理组分别降低了92%、31%、46%和60%,而PPARa的mRNA水平比T0901317处理组升高了30%。结论DHA通过降低脂肪酸合成和吸收基因的表达并升高脂肪酸降解基因的表达缓解肝x受体激活所致HepG2细胞内甘油三酯积聚。  相似文献   

17.
Studies have shown that not only does palmitic acid promote triglyceride (TG) accumulation, but it also affects cell viability in in vitro steatosis models. However, to what degree these effects are mediated by steatosis in goose primary hepatocytes is unknown. In this study, the effects of palmitic acid on the lipid metabolism homeostasis pathway and on apoptosis were determined. The authors measured the mRNA levels of genes involved in TG synthesis, lipid deposition, fatty acid oxidation and the assembly and secretion of VLDL-TG in goose primary hepatocytes. The results indicated that palmitic acid can significantly reduce the activity of goose hepatocytes, and that palmitic acid had a significant effect on TG accumulation; however, with increasing palmitic acid concentrations, the extracellular TG and extracellular VLDL concentration gradually decreased. With increasing palmitic acid concentrations, the gene expression levels of DGAT1, DGAT2, PPARα, CPT-1, FoxO1 and MTTP (which regulate hepatic TG synthesis, fatty acid oxidation and the assembly and secretion of VLDL-TGs) first increased and then decreased; the change in PLIN gene expression was palmitic acid dose-dependent, similar to the regulatory mode of intracellular TG accumulation. In conclusion, this study clearly shows that palmitic acid can promote TG accumulation and induce apoptosis in goose primary hepatocytes, and this effect may be related to the lipid metabolism pathway.  相似文献   

18.
19.
A systematic search for upstream controlling elements necessary for efficient expression of the yeast fatty acid synthase genes FAS1 and FAS2 revealed identical activation sites, UASFAS, in front of both FAS genes. The individual element confers, in a heterologous yeast test system, an approximately 40-fold stimulation of basal gene expression. The UASFAS motifs identified have the consensus sequence TYTTCACATGY and function in either orientation. The same sequence motif is found in the upstream regions of all so far characterized yeast genes encoding enzymes of phospholipid biosynthesis. In gel retardation assays, a protein factor, Fbf1 (FAS binding factor), was identified which interacted with UASFAS. The UASFAS motif proved to be an inositol/choline responsive element (ICRE) conferring strict repression by exogenous inositol and choline on a heterologous reporter gene. Its core sequence perfectly matches the CANNTG motif typical of basic helix-loop-helix DNA-binding proteins. In contrast to the individual UASFAS element, the intact yeast FAS promoters are not significantly influenced by inositol and choline, and thus allow nearly constitutive fatty acid synthase production. Available evidence suggests that additional cis- and trans-acting elements, other than UASFAS and Fbf1, are involved in this constitutive FAS gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号