首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Many protein kinases are regulated by phosphorylation in the activation loop, which is required for enzymatic activity. Glutamic acid can substitute for phosphothreonine in some proteins activated by phosphorylation, but this substitution (T169E) at the site of activation loop phosphorylation in the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28p blocks biological function and protein kinase activity. Using cycles of error-prone DNA amplification followed by selection for successively higher levels of function, we identified mutant versions of Cdc28p-T169E with high biological activity. The enzymatic and biological activity of the mutant Cdc28p was essentially normally regulated by cyclin, and the mutants supported normal cell cycle progression and regulation. Therefore, it is not a requirement for control of the yeast cell cycle that Cdc28p be cyclically phosphorylated and dephosphorylated. These CDC28 mutants allow viability in the absence of Cak1p, the essential kinase that phosphorylates Cdc28p-T169, demonstrating that T169 phosphorylation is the only essential function of Cak1p. Some growth defects remain in suppressed cak1 cdc28 strains carrying the mutant CDC28 genes, consistent with additional nonessential roles for CAK1.  相似文献   

2.
3.
CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes.  相似文献   

4.
Several SNPs located in or around the IL28B gene are associated with response of patients infected with Hepatitis C virus to treatment with pegylated interferon-α +/− ribavirin or with spontaneous clearance of the virus. The results of such studies are so compelling that future treatment approaches are likely to involve clinical decisions being made on the basis of a patient''s genotype. Since IL28B is a paralogue of IL28A with greater than 95% sequence identity, it is possible that without genotyping assay specificity, sequences in IL28A may contribute to genotype identification, and potentially confound treatment decisions. This study aimed to 1) examine DNA sequences in IL28B surrounding each of the reported associated SNPs and the corresponding regions in IL28A; and 2) develop a robust assay for rs12979860, the most ‘cosmopolitan’ SNP most strongly associated with treatment response across all global populations studied to date. Bioinformatic analysis of genomic regions surrounding IL28A and IL28B demonstrated that 3 SNPs were unique to IL28B, whereas the remaining 6 SNP regions shared >93% identity between IL28A and IL28B. Using a panel of DNA samples, PCR amplification followed by Sanger sequencing was used to examine IL28B SNPs and the corresponding regions in IL28A. For the overlapping SNPs, all 6 in IL28B were confirmed to be polymorphic whereas the corresponding positions in IL28A were monomorphic. Based upon IL28A and IL28B sequence data, a specific TaqMan® assay was developed for SNP rs12979860 that was 100% concordant to the sequence-derived genotypes. Analysis using a commercial assay identified one discordant result which led to a change in their genotype-calling algorithm. Where future treatment decisions are made upon the results of genotyping assays, it is very important that results are concordant with data from a sequence-based format. This is especially so in situations where designing specific PCR primers is a challenge.  相似文献   

5.
The G1 cyclin Cln2 negatively regulates the mating-factor pathway. In a genetic screen to identify factors required for this regulation, we identified an allele of CDC28 (cdc28-csr1) that blocked this function of Cln2. Cln2 immunoprecipitated from cdc28-csr1 cells was completely defective in histone H1 kinase activity, due to defects in Cdc28 binding and activation by Cln2. In contrast, Clb2-associated H1 kinase and Cdc28 binding was normal in immunoprecipitates from these cells. cdc28-csr1 was significantly deficient in other aspects of genetic interaction with Cln2. The cdc28-csr1 mutation was determined to be Q188P, in the T loop distal to most of the probable Cdk-cyclin interaction regions. We performed random mutagenesis of CDC28 to identify additional alleles incapable of causing CLN2-dependent mating-factor resistance but capable of complementing cdc28 temperature-sensitive and null alleles. Two such mutants had highly defective Cln2-associated kinase, but, surprisingly, two other mutants had levels of Cln2-associated kinase near to wild-type levels. We performed a complementary screen for CDC28 mutants that could cause efficient Cln2-dependent mating-factor resistance but not complement a cdc28 null allele. Most such mutants were found to alter residues essential for kinase activity; the proteins had little or no associated kinase activity in bulk or in association with Cln2. Several of these mutants also functioned in another assay for CLN2-dependent function not involving the mating-factor pathway, complementing the temperature sensitivity of a cln1 cln3 cdc28-csr1 strain. These results could indicate that Cln2-Cdc28 kinase activity is not directly relevant to some CLN2-mediated functions. Mutants of this sort should be useful in differentiating the function of Cdc28 complexed with different cyclin regulatory subunits.  相似文献   

6.
Cdc28 is the main cyclin-dependent kinase (CDK) directing the cell cycle in the budding yeast Saccharomyces cerevisiae. Besides cyclin binding, Cdc28 requires phosphorylation by the Cak1 kinase to achieve full activity. We have previously isolated carboxy-terminal cdc28CST mutants that are temperature sensitive and exhibit high chromosome instability. Both phenotypes are suppressed by high copy Cak1 in a manner that is independent of its catalytic activity and conversely, combination of cdc28CST and cak1 mutations results in synthetic lethality. Altogether, these results suggest that for the Cdc28 complexes to remain stable and active, an interaction with Cak1 is needed via the carboxyl terminus of Cdc28. We report two-hybrid assay data that support this model, and results that indicate that actively growing yeast cells require an optimum Cdc28:Cak1 ratio. While Cak1 is constitutively active and expressed, dividing cells tightly regulate Cak1 protein levels to ensure presence of adequate levels of Cdc28 CDK activity.  相似文献   

7.
8.
In the yeast Saccharomyces cerevisiae, the Edc3 protein was previously reported to participate in the auto-regulatory feedback loop controlling the level of the RPS28B messenger RNA (mRNA). We show here that Edc3 binds directly and tightly to the globular core of Rps28 ribosomal protein. This binding occurs through a motif that is present exclusively in Edc3 proteins from yeast belonging to the Saccharomycetaceae phylum. Functional analyses indicate that the ability of Edc3 to interact with Rps28 is not required for its general function and for its role in the regulation of the YRA1 pre-mRNA decay. In contrast, this interaction appears to be exclusively required for the auto-regulatory mechanism controlling the RPS28B mRNA decay. These observations suggest a plausible model for the evolutionary appearance of a Rps28 binding motif in Edc3.  相似文献   

9.
10.
11.

Background

The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer.

Methodology/Principal Findings

To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP.

Conclusions/Significance

We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.  相似文献   

12.
We have previously isolated a lactic acid bacterium (LAB), Pediococcus pentosaceus LP28, from the longan fruit Euphoria longana. Since the plant-derived LAB strain produces an extracellular polysaccharide (EPS), in this study, we analyzed the chemical structure and the biosynthesizing genes for the EPS.The EPS, which was purified from the LP28 culture broth, was classified into acidic and neutral EPSs with a molecular mass of about 50 kDa and 40 kDa, respectively. The acidic EPS consisted of glucose, galactose, mannose, and N-acetylglucosamine moieties. Interestingly, since pyruvate residue was detected in the hydrolyzed acidic EPS, one of the four sugars may be modified with pyruvate. On the other hand, the neutral EPS consisted of glucose, mannose, and N-acetylglucosamine; pyruvate was scarcely detected in the polysaccharide molecule.As a first step to deduce the probiotic function of the EPS together with the biosynthesis, we determined the whole genome sequence of the LP28 strain, demonstrating that the genome is a circular DNA, which is composed of 1,774,865 bp (1683 ORFs) with a GC content of 37.1%. We also found that the LP28 strain harbors a plasmid carrying 6 ORFs composed of 5366 bp with a GC content of 36.5%. By comparing all of the genome sequences among the LP28 strain and four strains of P. pentosaceus reported previously, we found that 53 proteins in the LP28 strain display a similarity of less than 50% with those in the four P. pentosaceus strains. Significantly, 4 of the 53 proteins, which may be enzymes necessary for the EPS production on the LP28 strain, were absent in the other four P. pentosaceus strains and displayed less than 50% similarity with other LAB species. The EPS-biosynthetic gene cluster detected only in the LP28 genome consisted of 12 ORFs containing a priming enzyme, five glycosyltransferases, and a putative polysaccharide pyruvyltransferase.  相似文献   

13.
Triple-negative breast cancer (TNBC) lacks significant expression of the estrogen receptor, the progesterone receptor, and of human epidermal growth factor receptor. It is the most aggressive and malignant of all breast cancers, and for which, there are currently no effective targeted therapies. We have shown previously that the RecQ helicase family member RECQL5 is essential for the proliferation and survival of TNBC cells; however, the mechanism of its involvement in cell viability has not been shown. Here, we report that the expression of RecQ family helicases, including RECQL5, is regulated by the deubiquitinase USP28. We found using genetic depletion or a small molecule inhibitor that like RECQL5, USP28 is also essential for TNBC cells to proliferate in vitro and in vivo. Compromising the function of USP28 by shRNA knockdown or the inhibitor caused TNBC cells to arrest in S/G2 phases, concurrent with DNA-damage checkpoint activation. We further showed that the small molecule inhibitor of USP28 displayed anti-tumor activity against xenografts derived from TNBC cells. Our results suggest that USP28 could be a potential therapeutic target for triple negative breast cancer.  相似文献   

14.
15.
16.
A set of PCR primers was designed and validated for specific detection and quantification of Prevotella ruminicola, Prevotella albensis, Prevotella bryantii, Fibrobacter succinogenes, Selenomonas ruminantium-Mitsuokella multiacida, Streptococcus bovis, Ruminococcus flavefaciens, Ruminobacter amylophilus, Eubacterium ruminantium, Treponema bryantii, Succinivibrio dextrinosolvens, and Anaerovibrio lipolytica. By using these primers and the real-time PCR technique, the corresponding species in the rumens of cows for which the diet was switched from hay to grain were quantitatively monitored. The dynamics of two fibrolytic bacteria, F. succinogenes and R. flavefaciens, were in agreement with those of earlier, culture-based experiments. The quantity of F. succinogenes DNA, predominant in animals on the hay diet, fell 20-fold on the third day of the switch to a grain diet and further declined on day 28, with a 57-fold reduction in DNA. The R. flavefaciens DNA concentration on day 3 declined to approximately 10% of its initial value in animals on the hay diet and remained at this level on day 28. During the transition period (day 3), the quantities of two ruminal prevotella DNAs increased considerably: that of P. ruminicola increased 7-fold and that of P. bryantii increased 263-fold. On day 28, the quantity of P. ruminicola DNA decreased 3-fold, while P. bryantii DNA was still elevated 10-fold in comparison with the level found in animals on the initial hay diet. The DNA specific for another xylanolytic bacterium, E. ruminantium, dropped 14-fold during the diet switch and was maintained at this level on day 28. The concentration of a rumen spirochete, T. bryantii, decreased less profoundly and stabilized with a sevenfold decline by day 28. The variations in A. lipolytica DNA were not statistically significant. After an initial slight increase in S. dextrinosolvens DNA on day 3, this DNA was not detected at the end of the experiment. S. bovis DNA displayed a 67-fold increase during the transition period on day 3. However, on day 28, it actually declined in comparison with the level in animals on the hay ration. The amount of S. ruminantium-M. multiacida DNA also increased eightfold following the diet switch, but stabilized with only a twofold increase on day 28. The real-time PCR technique also uncovered differential amplification of rumen bacterial templates with the set of universal bacterial primers. This observation may explain why some predominant rumen bacteria have not been detected in PCR-generated 16S ribosomal DNA libraries.  相似文献   

17.
Involvement of the bacterial thiopurine methyltransferase (bTPMT) in natural selenium methylation by freshwater was investigated. A freshwater environment that had no known selenium contamination but exhibited reproducible emission of dimethyl selenide (DMSe) or dimethyl diselenide (DMDSe) when it was supplemented with an organic form of selenium [(methyl)selenocysteine] or an inorganic form of selenium (sodium selenite) was used. The distribution of the bTPMT gene (tpm) in the microflora was studied. Freshwater bacteria growing on 10 μM sodium selenite and 10 μM sodium selenate were isolated, and 4.5 and 10% of the strains, respectively, were shown by colony blot hybridization to hybridize with a Pseudomonas syringae tpm DNA probe. Ribotyping showed that these strains are closely related. The complete rrs sequence of one of the strains, designated Hsa.28, was obtained and analyzed. Its closest phyletic neighbor was found to be the Pseudomonas anguilliseptica rrs sequence. The Hsa.28 strain grown with sodium selenite or (methyl)selenocysteine produced significant amounts of DMSe and DMDSe. The Hsa.28 tpm gene was isolated by genomic DNA library screening and sequencing. BLASTP comparisons of the deduced Hsa.28 bTPMT sequence with P. syringae, Pseudomonas aeruginosa, Vibrio cholerae, rat, and human thiopurine methyltransferase sequences revealed that the levels of similarity were 52 to 71%. PCR-generated Escherichia coli subclones containing the Hsa.28 tpm open reading frame were constructed. E. coli cells harboring the constructs and grown with sodium selenite or (methyl)selenocysteine produced significant levels of DMSe and DMDSe, confirming that the gene plays a role in selenium methylation. The effect of strain Hsa.28 population levels on freshwater DMSe and DMDSe emission was investigated. An increase in the size of the Hsa.28 population was found to enhance significantly the emission of methyl selenides by freshwater samples supplemented with sodium selenite or (methyl)selenocysteine. These data suggest that bTPMT can play a role in natural freshwater selenium methylation processes.  相似文献   

18.
Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1–10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates.  相似文献   

19.
The phenotypes of calbindin-D9k (CaBP-9k) and -28k (CaBP-28k) single knockout (KO) mice are similar to wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we generated CaBP-9k/CaBP-28k double knockout (DKO) mice in order to investigate the importance of CaBP-9k and CaBP-28k in active calcium processing. Under normal dietary conditions, DKO mice did not exhibit any changes in phenotype or the expression of active calcium transport genes as compared to WT or CaBP-28k KO mice. Under calcium-deficient dietary conditions, the phenotype and expression of calcium transport genes in CaBP-28k KO mice were similar to WT, whereas in DKO mice, serum calcium levels and bone length were decreased. The intestinal and renal expression of transient receptor potential vanilloid member 6 (TRPV6) mRNA was significantly decreased in DKO mice fed a calcium-deficient diet as compared to CaBP-28k KO or WT mice, and DKO mice died after 4 weeks on a calcium-deficient diet. Body weight, bone mineral density (BMD) and bone length were significantly reduced in all mice fed a calcium and 1,25-(OH)2D3-deficient diet, as compared to a normal diet, and none of the mice survived more than 4 weeks. These results indicate that deletion of CaBP-28k alone does not affect body calcium homeostasis, but that deletion of CaBP-9k and CaBP-28k has a significant effect on calcium processing under calcium-deficient conditions, confirming the importance of dietary calcium and 1,25-(OH)2D3 during growth and development.  相似文献   

20.
PURPOSE: This study aimed to identify the efficacy and toxicity of the FOLFIRI regimen (fluorouracil, leucovorin, and irinotecan) with irinotecan dose escalation plus bevacizumab as first-line chemotherapy for metastatic colorectal cancer (mCRC) via UGT1A1 genotyping. METHODS: We administered bevacizumab plus FOLFIRI with irinotecan dose escalation to treat 70 mCRC patients. The UGT1A1 *1/*1 and *1/*28 genotypes started with a 180-mg/m2 dose of irinotecan, and UGT1A1 *28/*28 genotype started with a dose of 120 mg/m2. The dose of irinotecan was escalated at increasing intervals of 20 to 30 mg/m2 until grade 3/4 adverse events (AEs) occurred. The clinical response rate, toxicity, and survival were analyzed. RESULTS: The clinical response and disease control rates of mCRC patients treated with FOLFIRI plus bevacizumab were significantly better in patients with UGT1A1 *1/*1 and *1/*28 genotypes than in patients with UGT1A1 *28/*28 (P = .006 and P < .001, respectively). Grade 3/4 AEs were significantly more common in mCRC patients with the UGT1A1 *28/*28 genotype (P < .001). Progression-free survival was significantly higher in UGT1A1 *1/*1 and *1/*28 patients (P = .002). mCRC patients who underwent metastasectomy achieved better overall survival than those who did not undergo metastasectomy (P = .015). CONCLUSIONS: Our study showed that mCRC patients with UGT1A1 *1/*1 and *1/*28 genotypes could receive escalated doses of irinotecan to obtain a more favorable clinical outcome without significant AEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号