首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of C5 protein with RNA aptamers selected by SELEX   总被引:1,自引:0,他引:1  
Lee JH  Kim H  Ko J  Lee Y 《Nucleic acids research》2002,30(24):5360-5368
RNA aptamers binding to C5 protein, the protein component of Escherichia coli RNase P, were selected and characterized as an initial step in elucidating the mechanism of action of C5 protein as an RNA-binding protein. Sequence analyses of the RNA aptamers suggest that C5 protein binds various RNA molecules with dissociation constants comparable to that of M1 RNA, the RNA component of RNase P. The dominant sequence, W2, was chosen for further study. Interactions between W2 and C5 protein were independent of Mg2+, in contrast to the Mg2+ dependency of M1 RNA–C5 protein interactions. The affinity of W2 for C5 protein increased with increasing concentration of monovalent NH4+, suggesting interactions via hydrophobic attraction. W2 forms a fairly stable complex with C5 protein, although the stability of this complex is lower than that of the complex of M1 RNA with C5 protein. The core RNA motif essential for interaction with C5 protein was identified as a stem–loop structure, comprising a 5 bp stem and a 20 nt loop. Our results strongly imply that C5 protein is an interacting partner protein of some cellular RNA species apart from M1 RNA.  相似文献   

2.
We have cloned the gene encoding RNase HII (RNase HIIPk) from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 by screening of a library for clones that suppressed the temperature-sensitive growth phenotype of an rnh mutant strain of Escherichia coli. This gene was expressed in an rnh mutant strain of E. coli, the recombinant enzyme was purified, and its biochemical properties were compared with those of E. coli RNases HI and HII. RNase HIIPk is composed of 228 amino acid residues (molecular weight, 25,799) and acts as a monomer. Its amino acid sequence showed little similarity to those of enzymes that are members of the RNase HI family of proteins but showed 40, 31, and 25% identities to those of Methanococcus jannaschii, Saccharomyces cerevisiae, and E. coli RNase HII proteins, respectively. The enzymatic activity was determined at 30°C and pH 8.0 by use of an M13 DNA-RNA hybrid as a substrate. Under these conditions, the most preferred metal ions were Co2+ for RNase HIIPk, Mn2+ for E. coli RNase HII, and Mg2+ for E. coli RNase HI. The specific activity of RNase HIIPk determined in the presence of the most preferred metal ion was 6.8-fold higher than that of E. coli RNase HII and 4.5-fold lower than that of E. coli RNase HI. Like E. coli RNase HI, RNase HIIPk and E. coli RNase HII cleave the RNA strand of an RNA-DNA hybrid endonucleolytically at the P-O3′ bond. In addition, these enzymes cleave oligomeric substrates in a similar manner. These results suggest that RNase HIIPk and E. coli RNases HI and HII are structurally and functionally related to one another.  相似文献   

3.
Loria A  Pan T 《Nucleic acids research》2001,29(9):1892-1897
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5′-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activity of this C-domain–P protein complex. The C-domain forms a specific complex with the P protein with a binding constant of ~0.1 µM. The C-domain–P protein complex and the holoenzyme are equally efficient in cleaving single-stranded RNA (~0.9 min–1 at pH 7.8) and substrates with a hairpin–loop 3′ to the cleavage site (~40 min–1). The holoenzyme reaction is much more efficient with a pre-tRNA substrate, binding at least 100-fold better and cleaving 10–500 times more efficiently. These results demonstrate that the RNase P holoenzyme is functionally constructed in three parts. The catalytic domain alone contains the active site, but has little specificity and affinity for most substrates. The specificity and affinity for the substrate is generated by either the specificity domain of RNase P RNA binding to a T stem–loop-like hairpin or RNase P protein binding to a single-stranded RNA. This modular construction may be exploited to obtain RNase P-based ribonucleoprotein complexes with altered substrate specificity.  相似文献   

4.
Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the preferred species. However, neither the function(s) nor the number of metal ions involved in catalysis is known. To gain information on metal ion involvement in catalysis, the rate of cleavage of the model substrate R1.1 RNA was determined as a function of Mg2+ concentration. Single-turnover conditions were applied, wherein phosphodiester cleavage was the rate-limiting event. The measured Hill coefficient (nH) is 2.0 ± 0.1, indicative of the involvement of two Mg2+ ions in phosphodiester hydrolysis. It is also shown that 2-hydroxy-4H-isoquinoline-1,3-dione—an inhibitor of ribonucleases that employ two divalent metal ions in their catalytic sites—inhibits E.coli RNase III cleavage of R1.1 RNA. The IC50 for the compound is 14 μM for the Mg2+-supported reaction, and 8 μM for the Mn2+-supported reaction. The compound exhibits noncompetitive inhibitory kinetics, indicating that it does not perturb substrate binding. Neither the O-methylated version of the compound nor the unsubstituted imide inhibit substrate cleavage, which is consistent with a specific interaction of the N-hydroxyimide with two closely positioned divalent metal ions. A preliminary model is presented for functional roles of two divalent metal ions in the RNase III catalytic mechanism.  相似文献   

5.
Bacterial ribonuclease P (RNase P) catalyzes the cleavage of 5′ leader sequences from precursor tRNAs (pre-tRNAs). Previously, all known substrate nucleotide specificities in this system are derived from RNA-RNA interactions with the RNase P RNA subunit. Here, we demonstrate that pre-tRNA binding affinities for Bacillus subtilis and Escherichia coli RNase P are enhanced by sequence-specific contacts between the fourth pre-tRNA nucleotide on the 5′ side of the cleavage site (N(− 4)) and the RNase P protein (P protein) subunit. B. subtilis RNase P has a higher affinity for pre-tRNA with adenosine at N(− 4), and this binding preference is amplified at physiological divalent ion concentrations. Measurements of pre-tRNA-containing adenosine analogs at N(− 4) indicate that specificity arises from a combination of hydrogen bonding to the N6 exocyclic amine of adenosine and steric exclusion of the N2 amine of guanosine. Mutagenesis of B. subtilis P protein indicates that F20 and Y34 contribute to selectivity at N(− 4). The hydroxyl group of Y34 enhances selectivity, likely by forming a hydrogen bond with the N(− 4) nucleotide. The sequence preference of E. coli RNase P is diminished, showing a weak preference for adenosine and cytosine at N(− 4), consistent with the substitution of Leu for Y34 in the E. coli P protein. This is the first identification of a sequence-specific contact between P protein and pre-tRNA that contributes to molecular recognition of RNase P. Additionally, sequence analyses reveal that a greater-than-expected fraction of pre-tRNAs from both E. coli and B. subtilis contains a nucleotide at N(− 4) that enhances RNase P affinity. This observation suggests that specificity at N(− 4) contributes to substrate recognition in vivo. Furthermore, bioinformatic analyses suggest that sequence-specific contacts between the protein subunit and the leader sequences of pre-tRNAs may be common in bacterial RNase P and may lead to species-specific substrate recognition.  相似文献   

6.
Carbon cycling in the hypersaline microbial mats from Chiprana Lake, Spain is primarily dependent on phototrophic microorganisms with the ability to fix CO2 into organics that can be further utilized by aerobic as well as anaerobic heterotrophic bacteria. Here, mat pieces were incubated in seawater amended with 14C sodium bicarbonate and the incorporation of the radiocarbon in the small subunit ribosomal RNA (SSU rRNA) of mat organisms was followed using scintillation counter and autoradiography. Different domains of SSU rRNA were separated from the total RNA by means of streptavidin-coated magnetic beads and biotin-labeled oligonucleotide probes. The 14C label was detected in isolated RNA by both scintillation counter and autoradiography, however the latter technique was less sensitive. Using scintillation counter, the radiolabel incorporation increased with time with a maximum rate of 0.18 Bq ng−1 detected after 25 days. The bacterial SSU rRNA could be captured using the magnetic beads, however the hybridization efficiency was around 20%. The captured RNA was radioactively labeled, which could be mainly due to the fixation of radiocarbon by phototrophic organisms. In conclusion, the incubation of microbial mats in the presence of radiolabeled bicarbonate leads to the incorporation of the 14C label into RNA molecules through photosynthesis and this label can be detected using scintillation counter. The used approach could be useful in studying the fate of fixed carbon and its uptake by other microorganisms in complex microbial mats, particularly when species-specific probes are used and the hybridization efficiency and RNA yield are further optimized.  相似文献   

7.
The paralogous endoribonucleases, RNase E and RNase G, play major roles in intracellular RNA metabolism in Escherichia coli and related organisms. To assay the relative importance of the principal RNA binding sites identified by crystallographic analysis, we introduced mutations into the 5′-sensor, the S1 domain, and the Mg+2/Mn+2 binding sites. The effect of such mutations has been measured by assays of activity on several substrates as well as by an assay of RNA binding. RNase E R169Q and the equivalent mutation in RNase G (R171Q) exhibit the strongest reductions in both activity (the kcat decrease ∼40- to 100-fold) and RNA binding consistent with a key role for the 5′-sensor. Our analysis also supports a model in which the binding of substrate results in an increase in catalytic efficiency. Although the phosphate sensor plays a key role in vitro, it is unexpectedly dispensable in vivo. A strain expressing only RNase E R169Q as the sole source of RNase E activity is viable, exhibits a modest reduction in doubling time and colony size, and accumulates immature 5 S rRNA. Our results point to the importance of alternative RNA binding sites in RNase E and to alternative pathways of RNA recognition.  相似文献   

8.
Escherichia coli ribosomes and Qβ [32P]RNA were incubated with or without fMet-tRNA under protein initiation conditions, treated with RNase A, and centrifuged through a sucrose density gradient. The sample incubated with fMet-tRNA gave a main radioactivity peak in the 70 S region, which consisted predominantly of coat cistron initiator fragments. After incubation without fMet-tRNA, equal amounts of radioactivity were found in the 70 S and the 30 S regions, but in both peaks almost all of the radioactivity was duo to three RNase A-resistant oligonucleotides, A-G-A-G-G-A-G-G-Up (P-2a), A-G-G-G-G-G-Up (P-15) and G-G-A-A-G-G-A-G-Cp (P-4). These three oligonucleotides are derived from three different RNA regions, none of which is close to a protein initiation site. All three fragments show striking complementarity to the 3′-terminal region of E. coli 16 S RNA. Ribosomes incubated with an RNase A digest of Qβ [32P]RNA bound almost exclusively oligonucleotide P-2a; treatment with cloacin DF13 cleaved off a complex consisting of a 49-nucleotide long segment of 16 S rRNA and oligonucleotide P-2a. These experiments show that the interaction of 30 S ribosomes with the “Shine-Dalgarno” region preceding the initiator codon of the Qβ coat cistron is insufficient to direct correct placement of the ribosome on the viral RNA, and that an additional contribution from the interaction of fMet-tRNA with the initiator triplet is required for ribosome binding to the initiator region.  相似文献   

9.
Veal heart ribonuclease P has an essential RNA component   总被引:14,自引:0,他引:14  
The activity of RNase P (EC 3.1.26.5) from veal heart can be abolished by pretreatment of the enzyme preparation with micrococcal nuclease, pancreatic RNase A, or RNase T1. This indicates that veal heart RNase P contains an RNA component essential for function of the enzyme as has also been shown for E. coli RNase P (1–3). Additionally, veal heart RNase P has a buoyant density in Cs2SO4 of 1.33 g/cm3, which is intermediate between that of protein and nucleic acid.  相似文献   

10.
The active site of a protein folding reaction is in domain V of the 23S rRNA in the bacterial ribosome and its homologs in other organisms. This domain has long been known as the peptidyl transferase center. Domain V of Bacillus subtilis is split into two segments, the more conserved large peptidyl transferase loop (RNA1) and the rest (RNA2). These two segments together act as a protein folding modulator as well as the complete domain V RNA. A number of site-directed mutations were introduced in RNA1 and RNA2 of B.subtilis, taking clues from reports of these sites being involved in various steps of protein synthesis. For example, sites like G2505, U2506, U2584 and U2585 in Escherichia coli RNA1 region are protected by deacylated tRNA at high Mg2+ concentration and A2602 is protected by amino acyl tRNA when the P site remains occupied already. Mutations A2058G and A2059G in the RNA1 region render the ribosome Eryr in E.coli and Lncr in tobacco chloroplast. Sites in P loop G2252 and G2253 in E.coli are protected against modification by the CCA end of the P site bound tRNA. Mutations were introduced in corresponding nucleotides in B.subtilis RNA1 and RNA2 of domain V. The mutants were tested for refolding using unfolded protein binding assays with unfolded carbonic anhydrase. In the protein folding assay, the mutants showed partial to complete loss of this activity. In the filter binding assay for the RNA–refolding protein complex, the mutants showed an extent of protein binding that agreed well with their protein folding activity.  相似文献   

11.
Acidic ribosomal phosphoproteins P0, P1 and P2 were isolated in soluble form from silkworm ribosomes and tested for their interactions with each other and with RNA fragments corresponding to the GTPase-associated domain of residues 1030–1127 (Escherichia coli numbering) in silkworm 28S rRNA in vitro. Mixing of P1 and P2 formed the P1P2 heterodimer, as demonstrated by gel mobility shift and chemical crosslinking. This heterodimer, but neither P1 or P2 alone, tightly bound to P0 and formed a pentameric complex, presumably as P0(P1–P2)2, assumed from its molecular weight derived from sedimentation analysis. Complex formation strongly stimulated binding of P0 to the GTPase-associated RNA domain. The protein complex and eL12 (E.coli L11-type), which cross-bound to the E.coli equivalent RNA domain, were tested for their function by replacing with the E.coli counterparts L10.L7/L12 complex and L11 on the rRNA domain within the 50S subunits. Both P1 and P2, together with P0 and eL12, were required to activate ribosomes in polyphenylalanine synthesis dependent on eucaryotic elongation factors as well as eEF-2-dependent GTPase activity. The results suggest that formation of the P1–P2 heterodimer is required for subsequent formation of the P0(P1–P2)2 complex and its functional rRNA binding in silkworm ribosomes.  相似文献   

12.
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.  相似文献   

13.
The endoribonuclease RNase E is a key enzyme in RNA metabolism for many bacterial species. In Escherichia coli, RNase E contributes to the majority of RNA turnover and processing events, and the enzyme has been extensively characterized as the central component of the RNA degradosome assembly. A similar RNA degradosome assembly has been described in the α-proteobacterium Caulobacter crescentus, with the interacting partners of RNase E identified as the Kreb''s cycle enzyme aconitase, a DEAD-box RNA helicase RhlB and the exoribonuclease polynucleotide phosphorylase. Here we report that an additional degradosome component is the essential exoribonuclease RNase D, and its recognition site within RNase E is identified. We show that, unlike its E. coli counterpart, C. crescentus RhlB interacts directly with a segment of the N-terminal catalytic domain of RNase E. The crystal structure of a portion of C. crescentus RNase E encompassing the helicase-binding region is reported. This structure reveals that an inserted segment in the S1 domain adopts an α-helical conformation, despite being predicted to be natively unstructured. We discuss the implications of these findings for the organization and mechanisms of the RNA degradosome.  相似文献   

14.
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.  相似文献   

15.
RNase P is involved in processing the 5⿲ end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.  相似文献   

16.
We have used model substrates carrying modified nucleotides at the site immediately 5′ of the canonical RNase P cleavage site, the −1 position, to study Escherichia coli RNase P RNA-mediated cleavage. We show that the nucleobase at −1 is not essential but its presence and identity contribute to efficiency, fidelity of cleavage and stabilization of the transition state. When U or C is present at −1, the carbonyl oxygen at C2 on the nucleobase contributes to transition-state stabilization, and thus acts as a positive determinant. For substrates with purines at −1, an exocyclic amine at C2 on the nucleobase promotes cleavage at an alternative site and it has a negative impact on cleavage at the canonical site. We also provide new insights into the interaction between E. coli RNase P RNA and the −1 residue in the substrate. Our findings will be discussed using a model where bacterial RNase P cleavage proceeds through a conformational-assisted mechanism that positions the metal(II)-activated H2O for an in-line attack on the phosphorous atom that leads to breakage of the phosphodiester bond.  相似文献   

17.
18.
19.
20.
Novel mechanisms for maturation of chloroplast transfer RNA precursors   总被引:21,自引:1,他引:20       下载免费PDF全文
Despite the prokaryotic origins of chloroplasts, a plant chloroplast tRNA precursor is processed in a homologous in vitro system by a pathway distinct from that observed in Escherichia coli, but identical to that utilized for maturation of nuclear pre-tRNAs. The mature tRNA 5' terminus is generated by the site-specific endonucleolytic cleavage of an RNase P (or P-type) activity. The 3' end is likewise produced by a single precise endonucleolytic cut at the 3' terminus of the encoded tRNA domain. This is the first complete structural characterization of an organellar tRNA processing system using a homologous substrate. In contrast to eubacterial RNase P, chloroplast RNase P does not appear to contain an RNA subunit. The chloroplast activity bands with bulk protein at 1.28 g/ml in CsCI density gradients, whereas E.coli RNase P bands as ribonucleoprotein at 1.73 g/ml. Chloroplast RNase P activity survives treatment with micrococcal nuclease (MN) at levels 10- to 100-fold higher than those required to totally inactivate the E.coli enzyme. The chloroplast system is sensitive to a suppression of tRNA processing, caused by binding of inactive MN to pre-tRNA substrate, which is readily overcome by addition of carrier RNA to the assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号