首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the mRNA and protein levels of the key enzymes involved in eicosanoid biosynthesis and the cysteinyl leukotriene receptors (CysLT1R and CysLT2R) have been analysed in non-transformed intestinal epithelial and colon cancer cell lines. Our results revealed that tumour necrosis factor alpha (TNF-α), and leukotriene D4 (LTD4), which are inflammatory mediators implicated in carcinogenesis, stimulated an increase of cyclooxygenase-2 (COX-2), in non-transformed epithelial cells, and 5-lipoxygenase (5-LO) in both non-transformed and cancer cell lines. Furthermore, these mediators also stimulated an up-regulation of LTC4 synthase in cancer cells as well as non-transformed cells. We also observed an endogenous production of CysLTs in these cells. TNF-α and LTD4, to a lesser extent, up-regulate the CysLT1R levels. Interestingly, TNF-α also reduced CysLT2R expression in cancer cells. Our results demonstrate that inflammatory mediators can cause intestinal epithelial cells to up-regulate the expression of enzymes needed for the biosynthesis of eicosanoids, including the cysteinyl leukotrienes, as well as the signal transducing proteins, the CysLT receptors, thus providing important mechanisms for both maintaining inflammation and for tumour progression.  相似文献   

2.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

3.
Lipid-laden foam macrophages are emerging as key players in early atherogenesis. Even though cytoplasmic lipid bodies (lipid droplets) are now recognized as organelles with cell functions beyond lipid storage, the mechanisms controlling lipid body biogenesis within macrophages and their additional functions in atherosclerosis are not completely elucidated. Here we studied oxLDL-elicited macrophage machinery involved in lipid body biogenesis as well as lipid body roles in leukotriene (LT) synthesis. Both in vivo and in vitro, oxLDL (but not native LDL) induced rapid assembly of cytoplasmic lipid bodies-bearing ADRP within mice macrophages. Such oxLDL-elicited foamy-like phenotype was a pertussis toxin-sensitive process that depended on a paracrine activity of endogenous MCP-1/CCL2 and activation of ERK. Pretreatment with neutralizing anti-MCP-1/CCL2 inhibited macrophage ADRP protein expression induced by oxLDL. By directly immuno-localizing leukotrienes at their sites of synthesis, we showed that oxLDL-induced newly formed lipid bodies function as active sites of LTB4 and LTC4 synthesis, since oxLDL-induced lipid bodies within foam macrophages compartmentalized the enzyme 5-lipoxygenase and five lipoxygenase-activating protein (FLAP) as well as newly formed LTB4 and LTC4. Consistent with MCP-1/CCL-2 role in ox-LDL-induced lipid body biogenesis, in CCR2 deficient mice both ox-LDL-induced lipid body assembly and LT release were reduced as compared to wild type mice. In conclusion, oxLDL-driven foam cells are enriched with leukotriene-synthesizing lipid bodies – specialized organelles whose biogenic process is mediated by MCP-1/CCL2-triggered CCR2 activation and ERK-dependent downstream signaling – that may amplify inflammatory mediator production in atherosclerosis.  相似文献   

4.
Leukotriene C4 (LTC4) is synthesized by binding of glutathione to LTA4, an epoxide derived from arachidonic acid, and further metabolized to LTD4 and LTE4. We previously prepared a monoclonal antibody with a high affinity and specificity to LTC4. To explore the structure of the antigen-binding site of a monoclonal antibody against LTC4 (mAbLTC), we isolated full-length cDNAs for heavy and light chains of mAbLTC. The heavy and light chains consisted of 461 and 238 amino acids including a signal peptide with molecular weights of 51,089 and 26,340, respectively. An expression plasmid encoding a single-chain antibody comprising variable regions of mAbLTC heavy and light chains (scFvLTC) was constructed and expressed in COS-7 cells. The recombinant scFvLTC showed a high affinity with LTC4 comparable to mAbLTC. The scFvLTC also bound to LTD4 and LTE4 with 48% and 17% reactivities, respectively, as compared with LTC4 binding, whereas the antibody showed almost no affinity for LTB4.  相似文献   

5.
The smooth muscle contractile and vasoactive mediator leukotriene C4 (5(S)-hydroxy-6(R)-sulfido-glutathionyl-eicosatetraenoic acid; LTC4) is converted by phorbol ester-stimulated human eosinophils to two isomers of leukotriene B4, 5(S),12(R)-6,8,10 trans-14 cis-eicosatetraenoic acid (5(S),12(R)-“all-trans”-LTB4) and 5(S),12(S)-“all-trans”-LTB4, which are leukocyte chemotactic factors lacking the humoral functions of LTC4. Optimal conversion of LTC4 to the “all-trans” isomers of LTB4 by intact eosinophils and soluble eosinophil peroxidase requires both H2O2 and halide ions. Oxidative metabolism of leukotrienes may represent an important regulatory function of eosinophils in hypersensitivity reactions.  相似文献   

6.
Human platelets are devoid of 5-lipoxygenase activity but convert exogenous leukotriene A4 (LTA4) either by a specific LTC4 synthase to leukotriene C4 or via a 12-lipoxygenase mediated reaction to lipoxins. Unstimulated platelets mainly produced LTC4, whereas only minor amounts of lipoxins were formed. Platelet activation with thrombin, collagen or ionophore A23187 increased the conversion of LTA4 to lipoxins and decreased the leukotriene production. Maximal effects were observed after incubation with ionophore A23187, which induced synthesis of comparable amounts of lipoxins and cysteinyl leukotrienes (LTC4, LTD4 and LTE4). Chelation of intra- and extracellular calcium with quin-2 and EDTA reversed the ionophore A23187-induced stimulation of lipoxin synthesis from LTA4 and inhibited the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) from endogenous substrate. However, calcium did not affect the 12-lipoxygenase activity in the 100 000 × g supernatant of sonicated platelet suspensions. Furthermore, the stimulatory effect on lipoxin formation induced by platelet agonists could be mimicked in intact platelets by the addition of low concentrations of arachidonic acid, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) or 13-hydroperoxyoctadecadienoic acid (13-HPODE). The results indicate that the elevated lipoxin synthesis during platelet activation is due to stimulated 12-lipoxygenase activity induced by endogenously formed 12-HPETE.  相似文献   

7.
8.
Leukotrienes are lipid mediators that are produced primarily by certain types of leukocytes. The synthesis of the leukotriene LTB4 is initiated by the enzyme 5-lipoxygenase and completed by LTA4 hydrolase. Epithelial cells constitutively express LTA4 hydrolase but normally lack 5-lipoxygenase. In this study, we report that the stratified squamous epithelial cells from inflamed or hyperplastic tissues of palatine and pharyngeal tonsils (nasopharyngeal-associated lymphoid tissue) express 5-lipoxygenase protein. The localization of 5-lipoxygenase was indicated by immunohistochemical staining and presence confirmed by immunoblot. Positive staining for 5-lipoxygenase in infiltrating leukocytes in inflamed tissues served as internal positive controls for immunohistochemical staining. Staining for 5-lipoxygenase in appendix tissue was negative for epithelial cells while positive for polymorphonuclear leukocytes, indicating that 5-lipoxygenase expression is not a general feature of epithelial cells in mucosa-associated lymphoid tissue. In tonsils, 5-lipoxygenase staining was pronounced in broad regions but reduced or absent in others, suggesting regional regulation of expression. Epithelial cells of tonsils were also positive for 5-lipoxygenase activating protein and leukotriene A4 hydrolase, indicating a capacity to produce LTB4. Taken together, these results suggest that the specialized epithelial cells of the mucosa-associated lymphoid tissue of human tonsils can synthesize LTB4. This lipid mediator may serve to modulate the function of cells within the lymphoid tissue as well as promote an inflammatory response.  相似文献   

9.
We examined the effects of various leukotriene synthesis inhibitors on calcium signalling in HeLa cells, before and after transfection with BLT1. All of the inhibitors studied were found to reduce increases in intracellular calcium concentration induced by BLT1, but also by an ionophore or activation of various G-protein coupled receptors, regardless of BLT1 expression. In order to explore the mechanism of these apparently general effects we examined HeLa cell expression of leukotriene receptors and biosynthetic enzymes and found that the genes for key leukotriene synthesis enzymes and all of the leukotriene receptors were not expressed. Leukotrienes are involved in the pathology of a variety of cancers, and for HeLa cells leukotrienes have been reported to be important for aspects of the carcinogenic phenotype. We find that leukotriene synthesis inhibitors have non-specific effects, so careful controls are necessary to avoid interpreting non-specific effects as evidence for leukotriene involvement.  相似文献   

10.
U937 and THP-1 cells possess some characteristics of human mononuclear phagocytes, cells which synthesize and release LTB4, LTC4, and LTD4. Incubation of these cells with recombinant human interferongamma (IFN-gamma) or Phorbol Myristate Acetate (PMA) induces a more differentiated cell state. We hypothesized that U937 and THP-1 cells would release LTB4, LTC4, and LTD4 in response to stimulation with the non-physiologic agonist, calcium ionophore A23187 and that preincubation with IFN-gamma or PMA might alter leukotriene release by thes cells. We cultured both cell lines for 48 hours in the presence and absence of IFN-gamma (10000 units/ml)n and for 120 hours in the presence and absence of PMA (160 nM) and then challenged them with A23187 (5uM) for 30 minutes at 37°C. The supernatants were deproteinated and assayed by RIA for LTB4 and LTC4 and by RP-HPLC for LTB4, LTC4, and LTD4. Neither U937 nor THP-1 cells released quantities of leukotrienes detectable by RIA, <0.3ng/5 × 106 cells. Peripheral blood mononuclear phagocytes from normal volumteers, cultured and challenged in vitro at under identical conditions, released 11.3 ± 2.9 ng LTB4 and 2.0 ± 1.5 ng LTC4/106 viable monocytes. The lack of leukotriene production by U937 and THP-1 cells was not altered by preincubation for 48 hours with IFN-gamma (n=3) nor by preincubation with PMA for 120 hours (n=3). We conclude 1) U937 and THP-1 cells do not appear to be appropriate in vitro models for the examination of leukotriene release from normal mononuclear phagocytes. 2) Pre-incubation of U937 and THP-1 cells with IFN-gamma or PMA under the conditions tested, does not induce the ability of these cell lines to release leukotrienes.  相似文献   

11.
Incubation of human leukocytes with opzonized zymosan or IgG immune complexes led to a time dependent release of leukotrienes (LT) B4 and C4. After 3–4 min, the levels of LTB4 and LTC4 were 93 and 35 pmol/3107 cells, respectively. These amounts were 2–4 times lower than those released by leukocytes stimulated with the calcium ionophore A 23187. The levels of LTC4 were 8 and 20 times lower than those of LTB4 after incubation with opsonized zymosan or immune complexes, respectively. Heat-inactivation of the serum prior to zymosan coating decreased the effect of opsonized zymosan. Uncoated zymosan was an even weaker stimulus of leukotriene formation. These results suggest that both complement factors and immunoglobulins play a pivotal role in activating leukotriene synthesis in a mixed suspension of human leukocytes.  相似文献   

12.
There are a variety of non-prostaglandin pathways for conversion of arachidonic acid, including lipoxygenase enzymes and epoxygenase enzymes such as cytochrome P-450. In a manner similar to that in which the cyclooxygenase pathways lead to the prostanoid family, ‘lipoxynoids’ refers to the family of products arising from this alternative group of pathways.Leukotrienes (LT's) are members of the lipoxynoid family arising from the action of 5-lipoxygenase enzymes. In the canine kidney, injections of leukotrienes C4, D4 and E4 into the renal artery produced weak vasodilation at doses of 3–30 ug. Responses to LTC4 and LTD4 were similar and greater than responses to LTE4, and responses were not different in animals which had received ibuprofen to inhibit prostaglandin synthesis. In contrast, these leukotrienes were potent vasoconstrictors of the mesenteric vascular bed in these same animals at doses of 0.01–0.3 ug. The order of potency was LTD4 LTC4 LTE4. Effects of these LT's were not changed in the presence of ibuprofen. Responses to LTC4 and LTD4, but not LTE4 were diminished approximately 50% after administration of FPL-55712 (2 mg/kg). Neither LTB4 nor 5-HETE produced any change in renal or mesenteric blood flow at doses up to 30 ug.However, indirect evidence has been obtained suggesting that an endogenous lipoxynoid pathway can be activated in the canine kidney which results in the formation of a vasoconstrictor product. Injections of 1–4 mg AA into the renal artery of water-replete dogs leads to vasodilation which can be blocked by inhibitors of cyclooxygenase enzymes. However, when dogs were water deprived for 16–20 hours before the experiment, biphasic changes in renal blood flow were found. Ibuprofen blocked the vasodilator phase of the response but neither ibuprofen or the thromboxane synthesis inhibitor OKY-1581 had any inhibitory effect on the constrictor phase. The constrictor phase was blocked only following administration of ETYA or BW-755C, suggesting that the metabolites responsible for the constriction were lipoxynoids. Since LT's produce renal vasodilation, it appears that the pathway involved is not the 5-lipoxygenase system. These data suggest that other lipoxynoid pathways (e.g. 12-lipoxygenase, 15-lipoxygenase or cytochrome p-450) may play a role in the renal response to water deprivation. At present, however, it may not be possible to distinguish between these possible pathways .  相似文献   

13.
Cysteinyl leukotrienes (cysLTs), which include leukotriene C4 (LTC4), are the predominant class of LTs synthesized by mast cells. CysLTs can induce many of the abnormalities seen in asthma. LTC4 is generated by the conjugation of LTA4 with reduced glutathione (GSH) by LTC4 synthase. During screening of the effects of prostanoids on high-affinity IgE receptor (FcεRI)-mediated LTC4 release from mast cells, we realized that some prostanoids, including ONO-AE1-259-01 and ONO-AE-248, inhibited LTC4 release, which was associated with a decrease in the amount of intracellular total GSH. We ascertained that l-buthionine-S,R-sulfoximine (BSO), a selective inhibitor of glutamate-cysteine ligase, inhibited LTC4 release. In addition, cell-permeable GSH, the glutathione reduced form ethyl ester (GSH-OEt), enhanced LTC4 release in accordance with the change in intracellular total GSH. Depletion of intracellular total GSH induced by ONO-AE-248 or BSO enhanced FcεRI-mediated LTB4 release in contrast to LTC4. Oxidative stress contributes to many pathological conditions including asthma. GSH is a major soluble antioxidant and a cofactor for several detoxifying enzymes including GSH peroxidase. Exposure of mast cells to hydrogen peroxide (H2O2) or diamide to mimic oxidative stress unexpectedly increased rather than decreased the intracellular reduced GSH content as well as total GSH in the late phase (i.e., 24 or 48 h after exposure), which was accompanied by an increase in LTC4 release. In conclusion, FcεRI-mediated LTC4 release from mast cells is mainly regulated by the amount of intracellular GSH. In some cases, oxidative stress may induce a late-phase increase in intracellular GSH, resulting in enhanced LTC4 release from mast cells.  相似文献   

14.
15.
Production of two eicosanoids derived from lipoxygenase and cyclooxygenase activities: leukotriene B4 (LTB4) and prostaglandin E2 (PGE2), respectively, have been simultaneously determined in turbot (Scophthalmus maximus) blood leucocyte and kidney macrophage supernatants by a reverse phase high performance liquid chromatography (HPLC) system coupled with a Diode–Array detector. Levels of LTB4 after calcium ionophore challenge were 4.08 ng ml−1 in blood leukocyte supernatants and 0.25 ng ml−1 in kidney macrophage supernatants. The levels found for PGE2 were 428.23 and 606.67 ng ml−1 in blood leukocytes and kidney macrophage supernatants, respectively. When blood leukocytes were treated with the respective inhibitors for the enzymes implicated on the synthesis of both compounds an inhibition of 90.35% was observed for PGE2 and 76.44% for LTB4. The detection limit of the method was 0.15 ng ml−1 for LTB4 and 50 ng ml−1 for PGE2.  相似文献   

16.
Summary Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl channels, i.e., via a depolarization of the cell membrane.  相似文献   

17.
Huang SC 《Life sciences》2011,88(17-18):819-824
AimsLeukotriene D4 (LTD4) causes contraction of the stomach through unclear receptors. The aim of the present study is to characterize the cysteinyl leukotriene receptor (CysLT) mediating leukotriene-induced muscle contraction in the stomach.Main methodsWe measured contraction of gastric muscle strips isolated from the guinea pig fundus and antrum caused by cysteinyl leukotrienes, including LTC4, LTD4 and LTE4, as well as the dihydroxy leukotriene LTB4 in vitro.Key findingsIn both fundic and antral muscle strips, LTC4 and LTD4 caused marked whereas LTE4 caused moderate, concentration-dependent contractions. In contrast, LTB4 caused only small contraction. The relative potencies for cysteinyl leukotrienes to cause contraction in both fundus and antrum were LTC4 = LTD4 > LTE4. The LTD4-induced contraction was not affected by tetrodotoxin or atropine, suggesting that the action is not neurally mediated. The LTD4-induced contraction in the fundus was almost abolished by the CysLT1 selective antagonist montelukast. In contrast, the LTD4-induced contraction in the antrum was only partially inhibited by montelukast or the dual CysLT1 and CysLT2 antagonist BAY u9773. This antral contraction was almost abolished by the combination of montelukast and BAY u9773, indicating enhancement of inhibition.SignificanceThe results of the present study demonstrate that cysteinyl leukotrienes LTC4, LTD4 and LTE4 cause moderate to marked whereas the dihydroxy leukotriene LTB4 causes small muscle contraction in the stomach in vitro. The leukotriene-induced contraction is mediated by CysLT1 in fundus but by CysLT1 and CysLT2 in antrum.  相似文献   

18.
The effects of PGE2 and its stable analogue, 16, 16 dimethyl PGE2 (dmPGE2) were investigated on ethanol-induced gastric mucosal haemorrhagic lesions and leukotriene formation in the rat. Exposure of the rat gastric mucosa to ethanol , produced a concentration-related increase in the mucosal formation of leukotriene B4 (LTB4) which was correlated with macroscopically-apparent haemorrhagic damage to the mucosa. Challenge with absolute ethanol likewise enhanced the mucosal formation of LTC4 whereas the mucosal formation of 6-keto-PGF was unaffected. Challenge of the rat gastric mucosa with ethanol induced a concentration-dependent increase in the formation of LTB4 and LTC4, but not 6-keto PGF. Pretreatment with PGE2 (200–500μg/kg p.o.) prevented the haemorrhagic mucosal damage induced by oral administration of absolute ethanol but not the increased formation of leukotrienes by the mucosa. In contrast, pretreatment with a high dose of dmPGE2 (20μg/kg p.o.) prevented both the gastric mucosal lesions and the increase mucosal leukotriene formation. The differences in the effects of these prostaglandins may be related to the nature or degree of protection of the gastric mucosa. Thus, high doses of dmPGE2 but not PGE2 may protect the cells close the luminal surface of the mucosa and hence reduce the stimulation of leukotriene synthesis by these cells.  相似文献   

19.
《Free radical research》2013,47(10):1230-1237
Abstract

The significance of 5-lipoxygenase and myeloperoxidase activities has not been extensively studied among young male smokers. Leukotriene B4, 20-hydroxy-leukotriene B4, 20-carboxy-leukotriene B4 and 3-chlorotyrosine were measured in plasma and urinary samples of young male smokers at 8 hours following cigarette abstinence and an hour after cigarette smoking. Leukotriene B4 and 3-chlorotyrosine were determined in neutrophils isolated from these individuals. The levels of these markers were compared with those of age-matched controls. In vitro studies were performed to evaluate the production of leukotriene B4 and 3-chlorotyrosine from human neutrophils following exposure to nicotine and cotinine. Thirty male smokers (mean age, 27.4 years) and 28 male non-smokers (mean age, 28.7 years) were studied. Plasma levels of leukotriene B4, 20-carboxy-leukotriene B4 and 3-chlorotyrosine were higher in smokers than in non-smokers; leukotriene B4 and 20-carboxy-leukotriene B4 levels increased further an hour after cigarette smoking. Peripheral neutrophils isolated from smokers showed greater expressions of myeloperoxidase and 5-lipoxygenase activities compared with non-smokers, while plasma leukotriene B4 and 3-chlorotyrosine were correlated significantly with high-sensitivity C-reactive protein and plasma nicotine concentrations. Exposure of human neutrophils to nicotine and cotinine resulted in a higher production of leukotriene B4 and 3-chlorotyrosine. To conclude, leukotriene B4 and 3-chlorotyrosine levels are increased in young male cigarette smokers. These results suggest that cigarette smoking aggravates neutrophil-mediated inflammation by modulating the activities of myeloperoxidase and 5-lipoxygenase pathways.  相似文献   

20.
Cysteinyl leukotrienes (cys-LTs) cause bronchoconstriction in anaphylaxis and asthma. They are formed by 5-lipoxygenase (5-LOX) from arachidonic acid (AA) yielding the unstable leukotriene A4 (LTA4) that is subsequently conjugated with glutathione (GSH) by LTC4 synthase (LTC4S). Cys-LT receptor antagonists and LTC4S inhibitors have been developed, but only the former have reached the market. High structural homology to related enzymes and lack of convenient test systems due to instability of added LTA4 have hampered the development of LTC4S inhibitors. We present smart cell-free and cell-based assay systems based on in situ-generated LTA4 that allow studying LTC4S activity and investigating LTC4S inhibitors. Co-incubations of microsomes from HEK293 cells expressing LTC4S with isolated 5-LOX efficiently converted exogenous AA to LTC4 (~ 1.3 μg/200 μg protein). Stimulation of HEK293 cells co-expressing 5-LOX and LTC4S with Ca2 +-ionophore A23187 and 20 μM AA resulted in strong LTC4 formation (~ 250 ng/106 cells). MK-886, a well-known 5-LOX activating protein (FLAP) inhibitor that also acts on LTC4S, consistently inhibited LTC4 formation in all assay types (IC50 = 3.1–3.5 μM) and we successfully confirmed TK04a as potent LTC4S inhibitor in these assay systems (IC50 = 17 and 300 nM, respectively). We demonstrated transcellular LTC4 biosynthesis between neutrophils or 5-LOX-expressing HEK293 cells that produce LTA4 from AA and HEK293 cells expressing LTC4S that transform LTA4 to LTC4. In conclusion, our assay approaches are advantageous as the substrate LTA4 is generated in situ and are suitable for studying enzymatic functionality of LTC4S including site-directed mutations and evaluation of LTC4S inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号