首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As one of its primary physiological functions, sPLA2-IIA appears to act as an antibacterial agent. In particular, sPLA2-IIA shows high activity towards Gram-positive bacteria such as Staphylococcus aureus (S. aureus). This antibacterial activity results from the preference of the enzyme towards membranes enriched in anionic lipids, which is a common feature of bacterial membranes. An intriguing aspect observed in a variety of bacterial membranes is the presence of a broad but cooperative lipid chain melting event where the lipids in the membrane transition from a solid-ordered (so) into a liquid-disordered (ld) state close to physiological temperatures. It is known that the enzyme is sensitive to the level of lipid packing, which changes sharply between the so and the ld states. Therefore, it would be expected that the enzyme activity is regulated by the bacterial membrane thermotropic behavior. We determine by FTIR the thermotropic lipid chain melting behavior of S. aureus and find that the activity of sPLA2-IIA drops sharply in the so state. The activity of the enzyme is also evaluated in terms of its effects on cell viability, showing that cell survival increases when the bacterial membrane is in the so state during enzyme exposure. These results point to a mechanism by which bacteria can develop increased resistance towards antibacterial agents that act on the membrane through a cooperative increase in the order of the lipid chains. These results show that the physical behavior of the bacterial membrane can play an important role in regulating physiological function in an in vivo system.  相似文献   

2.
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as “non-pancreatic”, “synovial”, “platelet-type”, “inflammatory”, and “bactericidal” sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.  相似文献   

3.
During acute myocardial infarction (AMI), ischemia leads to necrotic areas surrounded by border zones of reversibly damaged cardiomyocytes, showing membrane flip-flop. During reperfusion type IIA secretory phopholipase A2 (sPLA2-IIA) induces direct cell-toxicity and facilitates binding of other inflammatory mediators on these cardiomyocytes. Therefore, we hypothesized that the specific sPLA2-IIA-inhibitor PX-18 would reduce cardiomyocyte death and infarct size in vivo. Wistar rats were treated with PX-18 starting minutes after reperfusion, and at day 1 and 2 post AMI. After 28 days hearts were analyzed. Furthermore, the effect of PX-18 on membrane flip-flop and apoptosis was investigated in vitro. PX-18 significantly inhibited sPLA2-IIA activity and reduced infarct size (reduction 73 ± 9%, P < 0.05), compared to the vehicle-treated group, without impairing wound healing. In vitro, PX-18 significantly reduced reversible membrane flip-flop and apoptosis in cardiomyocytes. However, no sPLA2-IIA activity could be detected, suggesting that PX-18 also exerted a protective effect independent of sPLA2-IIA. In conclusion, PX-18 is a potent therapeutic to reduce infarct size by inhibiting sPLA2-IIA, and possibly also by inhibiting apoptosis of cardiomyocytes in a sPLA2-IIA independent manner. A. van Dijk and P. A. J. Krijnen have contributed equally to the study.  相似文献   

4.
We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA2-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA2 activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA2 and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA2s. The recombinant sPLA2s were inhibited by sPLA2 inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA2 genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA2s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA2s showed the presence of the sPLA2 enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA2 genes that mediate nodulation reactions strongly supports our hypothesis that sPLA2s are central enzymes in insect cellular immune reactions.  相似文献   

5.
Protein kinase C (PKC) is a family of serine/threonine kinases involved in various signal transduction pathways. We investigated the roles of PKC in the regulation of group IIA secreted phospholipase A2 (sPLA2-IIA) expression in cytokine-stimulated rat fibroblastic 3Y1 cells. Here we show that the induction of sPLA2-IIA by proinflammatory cytokines was under the control of both classical cPKCα and atypical aPKCλ/ι pathways by using PKC inhibitors, a PKC activator, and PKC knockdowns. Treatment of 3Y1 cells with PKC selective inhibitors having broad specificity, such as chelerythrine chloride and GF109203X, blocked IL-1β/TNFα-dependent induction of sPLA2-IIA protein in a dose-dependent manner. Treatment with the PKC activator phorbol 12-myristate 13-acetate (PMA), which activates cPKC and novel nPKC isoforms, markedly attenuated the cytokine-dependent induction of sPLA2-IIA expression. In comparison, 24-h pretreatment with PMA, which down-regulates these PKC isoforms, markedly enhanced sPLA2-IIA expression. Results with short hairpin RNA (shRNA)-mediated knockdown of PKC isoforms revealed that the cytokine-induced sPLA2-IIA expression was markedly enhanced in cPKCα knockdown cells compared to those in replicate control cells. In contrast, knockdown of the aPKCλ/ι isoform reduced the cytokine-induced expression of sPLA2-IIA. These results suggest that the aPKCλ/ι pathway is required for the induction of sPLA2-IIA expression and that the cPKCα pathway acts as a negative regulator of sPLA2-IIA expression in cytokine-stimulated rat fibroblasts.  相似文献   

6.
There is a considerable body of evidence supporting the role of secretory type II-A phospholipase A(2) (sPLA(2)-IIA) as an effector of the innate immune response. This enzyme also exhibits bactericidal activity especially toward Gram-positive bacteria. In this study we examined the ability of sPLA(2)-IIA to kill Bacillus anthracis, the etiological agent of anthrax. Our results show that both germinated B. anthracis spores and encapsulated bacilli were sensitive to the bactericidal activity of recombinant sPLA(2)-IIA in vitro. In contrast, nongerminated spores were resistant. This bactericidal effect was correlated to the ability of sPLA(2)-IIA to hydrolyze bacterial membrane phospholipids. Guinea pig alveolar macrophages, the major source of sPLA(2)-IIA in an experimental model of acute lung injury, released enough sPLA(2)-IIA to kill extracellular B. anthracis. The production of sPLA(2)-IIA was significantly inhibited by B. anthracis lethal toxin. Human bronchoalveolar lavage fluids from acute respiratory distress syndrome patients are known to contain sPLA(2)-IIA; bactericidal activity against B. anthracis was detected in a high percentage of these samples. This anthracidal activity was correlated to the levels of sPLA(2)-IIA and was abolished by an sPLA(2)-IIA inhibitor. These results suggest that sPLA(2)-IIA may play a role in innate host defense against B. anthracis infection and that lethal toxin may help the bacteria to escape from the bactericidal action of sPLA(2)-IIA by inhibiting the production of this enzyme.  相似文献   

7.
Bacillus anthracis is a member of the Bacillus cereus group species (also known as the “group 1 bacilli”), a collection of Gram-positive spore-forming soil bacteria that are non-fastidious facultative anaerobes with very similar growth characteristics and natural genetic exchange systems. Despite their close physiology and genetics, the B. cereus group species exhibit certain species-specific phenotypes, some of which are related to pathogenicity. B. anthracis is the etiologic agent of anthrax. Vegetative cells of B. anthracis produce anthrax toxin proteins and a poly-d-glutamic acid capsule during infection of mammalian hosts and when cultured in conditions considered to mimic the host environment. The genes associated with toxin and capsule synthesis are located on the B. anthracis plasmids, pXO1 and pXO2, respectively. Although plasmid content is considered a defining feature of the species, pXO1- and pXO2-like plasmids have been identified in strains that more closely resemble other members of the B. cereus group. The developmental nature of B. anthracis and its pathogenic (mammalian host) and environmental (soil) lifestyles of make it an interesting model for study of niche-specific bacterial gene expression and physiology.  相似文献   

8.
Human non-pancreatic secretory phospholipase A2 (hnpsPLA2) is a group IIA phospholipase A2 which plays an important role in the innate immune response. This enzyme was found to exhibit bactericidal activity toward Gram-positive bacteria, but not Gram-negative ones. Though native hnpsPLA2 is active over a broad pH range, it is only highly active at alkaline conditions with the optimum activity pH of about 8.5. In order to make it highly active at neutral pH, we have obtained two hnpsPLA2 mutants, Glu89Lys and Arg100Glu that work better at neutral pH in a previous study. In the present study, we tested the bactericidal effects of the native hnpsPLA2 and the two mutants. Both native hnpsPLA2 and the two mutants exhibit bactericidal activity toward Gram-positive bacteria. Furthermore, they can also kill Escherichia coli, a Gram-negative bacterium. The two mutants showed better bactericidal activity for E. coli at neutral pH than the native enzyme, which is consistent with the enzyme activities. As hnpsPLA2 is highly stable and biocompatible, it may provide a promising therapy for bacteria infection treatment or other bactericidal applications.  相似文献   

9.
Although the expression of the prototypic secretory phospholipase A2 (sPLA2), group IIA (sPLA2-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA2 enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA2s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA2-V, and to a lesser extent that of sPLA2-IID, -IIE, and -IIF, were increased, whereas that of sPLA2-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA2-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA2-IIA inhibitor that turned out to inhibit sPLA2-IID, -IIE, -V and -X as well. In contrast, sPLA2-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA2s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

10.
Neuroinflammation is involved in various central nervous system (CNS) disorders, including brain infections, ischemia, trauma, stroke, and degenerative CNS diseases. In the CNS inflammation, secretory phospholipase A2-IIA (sPLA2-IIA) acts as a mediator, resulting in the generation of the precursors of pro-inflammatory lipid mediators, such as prostaglandins (PGs) and leukotrienes (LTs). However, the role of sPLA2-IIA in neuroinflammation is more complicated and remains unclear yet. In the present study, we investigated the effect of sPLA2-IIA inhibition by specific inhibitor SC-215 on the inflammation in LPS-induced mice cerebral cortex and primary astrocytes. Our results showed that the inhibition of sPLA2-IIA alleviated the release of PGE2 by suppressing the activation of ERK1/2, cPLA2α, COX-2 and mPGES-1. These findings demonstrated that sPLA2-IIA showed the potential to regulate the neuroinflammation in vivo and in vitro, indicating that sPLA2-IIA might be a novel target for the treatment of acute neuroinflammation.  相似文献   

11.
Phospholipases A2 (PLA2) catalyse the cleavage of fatty acids esterified at the sn-2 position of glycerophospholipids. In acute lung injury-acute respiratory distress syndrome (ALI-ARDS) several distinct isoenzymes appear in lung cells and fluid. Some are capable to trigger molecular events leading to enhanced inflammation and lung damage and others have a role in lung surfactant recycling preserving lung function: Secreted forms (groups sPLA2-IIA, -V, -X) can directly hydrolyze surfactant phospholipids. Cytosolic PLA2 (cPLA2-IVA) requiring Ca2+ has a preference for arachidonate, the precursor of eicosanoids which participate in the inflammatory response in the lung. Ca2+-independent intracellular PLA2s (iPLA2) take part in surfactant phospholipids turnover within alveolar cells. Acidic Ca2+-independent PLA2 (aiPLA2), of lysosomal origin, has additionally antioxidant properties, (peroxiredoxin VI activity), and participates in the formation of dipalmitoyl-phosphatidylcholine in lung surfactant. PAF-AH degrades PAF, a potent mediator of inflammation, and oxidatively fragmented phospholipids but also leads to toxic metabolites. Therefore, the regulation of PLA2 isoforms could be a valuable approach for ARDS treatment.  相似文献   

12.
Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50–60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.  相似文献   

13.
The aim of this study was to investigate whether early phase of acute respiratory distress syndrome (ARDS) is associated with changes in immune response, either systemic or localized to the lung. ARDS and control mechanically ventilated patients, as well as healthy volunteers were studied. Alveolar macrophages (AMΦ) and blood monocytes (BM) were treated ex vivo with lipopolysaccharide (LPS), interferon-γ (IFNγ), and surfactant. Phospholipase A2 (PLA2) activity and TLR4 expression were evaluated as markers of cell response. AMΦ from ARDS patients did not respond upon treatment with either LPS or IFN-γ by inducing PLA2 production. On the contrary, upon stimulation, in control patients the intracellular PLA2, (mainly cPLA2) levels were increased, but secretion of PLA2 (mainly sPLA2-IIA) was observed only after treatment with LPS. Surfactant suppressed PLA2 production in cells from both groups of patients. Increased relative changes of total PLA2 activity and an upregulation of TLR4 expression upon stimulation was observed in BM from primary ARDS, control patients and healthy volunteers. In BM from secondary ARDS patients, however, no PLA2 induction was observed, with a concomitant down-regulation of TLR4 expression. Cytosolic PLA2, its activated form, p-cPLA2, and sPLA2-IIA were the predominant PLA2 types within the cells, while extracellularly only sPLA2-IIA was identified. These results support the concept of down-regulated innate immunity in early ARDS that is compartmentalized in primary and systemic in secondary ARDS. PLA2 isoforms could serve as markers of the immunity status in ARDS. Finally, our data highlight the role of surfactant in controlling inflammation.  相似文献   

14.
Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.  相似文献   

15.
The innate immune system in humans consists of both cellular and humoral components that collaborate to eradicate invading bacteria from the body. Here, we discover that the Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, does not grow in human serum. Fractionation of serum by gel filtration chromatography led to the identification of human transferrin as the inhibiting factor. Purified transferrin blocks growth of both the fully virulent encapsulated B. anthracis Ames and the non-encapsulated Sterne strain. Growth inhibition was also observed in serum of wild-type mice but not of hypotransferrinemic mice that only have ∼1% circulating transferrin levels. We were able to definitely assign the bacteriostatic activity of transferrin to its iron-binding function: neither iron-saturated transferrin nor a recombinant transferrin mutant unable to bind iron could inhibit growth of B. anthracis. Additional iron could restore bacterial growth in human serum. The observation that other important Gram-positive pathogens are not inhibited by transferrin suggests they have evolved effective mechanisms to circumvent serum iron deprivation. These findings provide a better understanding of human host defense mechanisms against anthrax and provide a mechanistic basis for the antimicrobial activity of human transferrin.  相似文献   

16.
Bacillus anthracis, a spore-forming gram-positive bacterium, causes anthrax. The external surface of the exosporium is coated with glycosylated proteins. The sugar additions are capped with the unique monosaccharide anthrose. The West African Group (WAG) B. anthracis have mutations rendering them anthrose deficient. Through genome sequencing, we identified 2 different large chromosomal deletions within the anthrose biosynthetic operon of B. anthracis strains from Chile and Poland. In silico analysis identified an anthrose-deficient strain in the anthrax outbreak among European heroin users. Anthrose-deficient strains are no longer restricted to West Africa so the role of anthrose in physiology and pathogenesis was investigated in B. anthracis Sterne. Loss of anthrose delayed spore germination and enhanced sporulation. Spores without anthrose were phagocytized at higher rates than spores with anthrose, indicating that anthrose may serve an antiphagocytic function on the spore surface. The anthrose mutant had half the LD50 and decreased time to death (TTD) of wild type and complement B. anthracis Sterne in the A/J mouse model. Following infection, anthrose mutant bacteria were more abundant in the spleen, indicating enhanced dissemination of Sterne anthrose mutant. At low sample sizes in the A/J mouse model, the mortality of ΔantC-infected mice challenged by intranasal or subcutaneous routes was 20% greater than wild type. Competitive index (CI) studies indicated that spores without anthrose disseminated to organs more extensively than a complemented mutant. Death process modeling using mouse mortality dynamics suggested that larger sample sizes would lead to significantly higher deaths in anthrose-negative infected animals. The model was tested by infecting Galleria mellonella with spores and confirmed the anthrose mutant was significantly more lethal. Vaccination studies in the A/J mouse model showed that the human vaccine protected against high-dose challenges of the nonencapsulated Sterne-based anthrose mutant. This work begins to identify the physiologic and pathogenic consequences of convergent anthrose mutations in B. anthracis.

A study of the spontaneous loss of the spore coat monosaccharide anthrose suggests that convergent evolution in several anthrax strains towards increased pathogenicity could exacerbate global human and animal anthrax disease.  相似文献   

17.
We studied secretory phospholipase A2 type IIA (sPLA2) activity toward phospholipids that are derivatized in the sn-1 position of the glycerol backbone. We explored what type of side group (small versus bulky groups, hydrophobic versus polar groups) can be introduced at the sn-1 position of the glycerol backbone of glycerophospholipids and at the same time be hydrolyzed by sPLA2. The biophysical characterization revealed that the modified phospholipids can form multilamellar vesicles, and several of the synthesized sn-1 functionalized phospholipids were hydrolyzed by sPLA2. Molecular dynamics simulations provided detailed insight on an atomic level that can explain the observed sPLA2 activity toward the different phospholipid analogs. The simulations revealed that, depending on the nature of the side chain located at the sn-1 position, the group may interfere with an incoming water molecule that acts as the nucleophile in the enzymatic reaction. The simulation results are in agreement with the experimentally observed sPLA2 activity toward the different phospholipid analogs.  相似文献   

18.
Human bocavirus (HBoV) is a new parvovirus first discovered in 2005, which is associated with acute respiratory infection. Analysis of sequence homology has revealed that a putative phospholipase A2 (PLA2) motif exists in the VP1 unique region of HBoV. However, little is known about whether the VP1 unique region of HBoV has PLA2 enzymatic activity and how these critical residues contribute to its PLA2 activity. To address these issues, the VP1 unique region protein and four of its mutants, were expressed in Eschericha coli. The purified VP1 unique protein (VP1U) showed a typical Ca2+-dependent secreted PLA2-like (sPLA2) activity, which was inhibited by sPLA2-specific inhibitors in a time-dependent manner. Mutation of one of the amino acids (21Pro, 41His, 42Asp or 63Asp) in VP1U almost eliminated the sPLA2 activity of HBoV VP1U. These data indicate that VP1U of HBoV has sPLA2-like enzymatic activity, and these residues are crucial for its sPLA2-like activity. Potentially, VP1U may be a target for the development of anti-viral drugs for HBoV.  相似文献   

19.
Glycerophospholipids are major components of cell membranes and have enormous variation in the composition of fatty acyl chains esterified on the sn-1 and sn-2 position as well as the polar head groups on the sn-3 position of the glycerol backbone. Phospholipase A2 (PLA2) enzymes constitute a superfamily of enzymes which play a critical role in metabolism and signal transduction by hydrolyzing the sn-2 acyl chains of glycerophospholipids. In human cell membranes, in addition to the conventional diester phospholipids, a significant amount is the sn-1 ether-linked phospholipids which play a critical role in numerous biological activities. However, precisely how PLA2s distinguish the sn-1 acyl chain linkage is not understood. In the present study, we expanded the technique of lipidomics to determine the unique in vitro specificity of three major human PLA2s, including Group IVA cytosolic cPLA2, Group VIA calcium-independent iPLA2, and Group V secreted sPLA2 toward the linkage at the sn-1 position. Interestingly, cPLA2 prefers sn-1 vinyl ether phospholipids known as plasmalogens over conventional ester phospholipids and the sn-1 alkyl ether phospholipids. iPLA2 showed similar activity toward vinyl ether and ester phospholipids at the sn-1 position. Surprisingly, sPLA2 preferred ester phospholipids over alkyl and vinyl ether phospholipids. By taking advantage of molecular dynamics simulations, we found that Trp30 in the sPLA2 active site dominates its specificity for diester phospholipids.  相似文献   

20.
Bacillus anthracis is a Gram-positive, spore-forming bacterium representing the etiological agent of acute infectious disease anthrax, a lethal but rare disease of animals and humans in nature. With recent use of anthrax as a bioweapon, a number of techniques have been recently developed and evaluated to facilitate its rapid detection of B. anthracis in the environment as well as in point-of-care settings for humans suspected of exposure to the pathogen. Complex laboratory methods for B. anthracis identification are required since B. anthracis has similarities with other Bacillus species and its existence in both spore and vegetative forms. This review discusses current challenges and various improvements associated with anthrax agent detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号