首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ta-JA1 is a jacalin-like lectin from wheat (Triticum aestivum) plants. To date, its homologs are only observed in the Gramineae family. Our previous experiments have demonstrated that Ta-JA1 contains a modular structure consisting of an N-terminal dirigent domain and a C-terminal jacalin-related lectin domain (JRL) and this protein exhibits a mannose-specific lectin activity. The over-expression of Ta-JA1 gene provides transgenic plants a broad-spectrum resistance to diseases. Here, we report the differential activities of the dirigent and JRL domains of Ta-JA1. In vitro assay showed that the recombinant JRL domain could effectively agglutinate rabbit erythrocytes and pathogen bacteria Pseudomonas syringe pv tabaci. These hemagglutination activities could be inhibited by mannose but not by galactose. In contrast, the recombinant dirigent domain did not show agglutination activity. Corresponding to these differentiations of activities, similar to full-length of Ta-JA1, the over-expression of JRL domain in transgenic plants also increased resistance to the infection of P. syringe. Unlike JRL, the over-expression of dirigent domain in transgenic plants led to alteration of the seedling sensitivity to salts. In addition, a dN/dS ratio analysis of Ta-JA1 and its related proteins showed that this protein family functionally limited to a few crop plants, such as maize, rice and wheat.  相似文献   

2.
3.
Jacalin-related lectins (JRLs) are carbohydrate-binding proteins widely present in plants and have one or more jacalin domains in common. However, JRLs’ structural types and functions are still poorly understood. In the present study, a total of 67 wheat (Triticum aestivum) JRL genes were identified through an exhausted search of EST database coupling with genome walking using published 454 sequence reads of Chinese Spring. A comparison of the translated wheat JRL proteins with those from other plants showed plant JRLs generally had low sequence similarity within and between species but exhibited conserved modular domain structures. More JRL genes encoded multiple jacalin domains in Arabidopsis thaliana, whereas more genes encoded chimeric JRLs in cereal plants. Dirigent domain-containing JRL genes were Poaceae-specific and accounted for nearly half of the identified wheat JRL genes. The dirigent domains were evolutionarily significantly correlated with the covalently linked jacalin domains. A phylogenetic analysis showed JRL proteins have experienced a substantial diversification after speciation. Moreover, new structural features conserved across the taxa were identified. Digital expression analysis and RT-PCR assays showed the expression of wheat JRL genes was largely tissue specific, typically low, and mostly inducible by biotic and abiotic stresses and stress hormones. These results suggest plant JRLs are critical for plant adaptation to stressful environments.  相似文献   

4.
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant’s resistance to disease.  相似文献   

5.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

6.
The plant extracellular space, including the apoplast and plasma membrane, is the initial site of plant–pathogen interactions. Pathogens deliver numerous secreted proteins, called effectors, into this region to suppress plant immunity and establish infection. Downy mildew caused by the oomycete pathogen Sclerospora graminicola (Sg) is an economically important disease of Poaceae crops including foxtail millet (Setaria italica). We previously reported the genome sequence of Sg and showed that the jacalin‐related lectin (JRL) gene family has significantly expanded in this lineage. However, the biological functions of JRL proteins remained unknown. Here, we show that JRL from Sg (SgJRL) functions as an apoplastic virulence effector. We identified eight SgJRLs by protein mass spectrometry analysis of extracellular fluid from Sg‐inoculated foxtail millet leaves. SgJRLs consist of a jacalin‐like lectin domain and an N‐terminal putative secretion signal; SgJRL expression is induced by Sg infection. Heterologous expression of three SgJRLs with N‐terminal secretion signal peptides in Nicotiana benthamiana enhanced the virulence of the pathogen Phytophthora palmivora inoculated onto the same leaves. Of the three SgJRLs, SG06536 fused with green fluorescent protein (GFP) localized to the apoplastic space in N. benthamiana leaves. INF1‐mediated induction of defence‐related genes was suppressed by co‐expression of SG06536‐GFP. These findings suggest that JRLs are novel apoplastic effectors that contribute to pathogenicity by suppressing plant defence responses.  相似文献   

7.
王欣禹  周勇  任安芝  高玉葆 《生态学报》2014,34(23):6789-6796
以感染内生真菌的天然禾草羊草为实验材料,通过体外纯培养条件下的内生真菌、感染内生真菌的离体叶片和在体叶片对3种病原菌的抑菌实验,以探讨内生真菌对宿主植物羊草在抗病性方面的贡献。结果表明:体外纯培养条件下,分离自羊草的内生真菌Epichlobromicola对新月弯孢(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)和枝孢霉(Cladosporium sp.)这3种病原菌都具有抑制作用,抑菌率分别达56.22%,46.93%和45.15%,且内生真菌培养滤液可以有效抑制这3种病原菌的孢子萌发,平均萌发率分别为30.4%,15.7%和16.4%;宿主植物叶片在离体条件下,内生真菌感染可以有效降低羊草叶片受C.lunata和C.sp.侵染后的病斑数或病斑长度,但对B.sorokiniana不起作用,甚至提高了叶片的病斑数及病斑长度,而离体叶片提取液对不同病原菌均有不同程度的抑制作用;在体条件下,内生真菌均可以通过降低叶片病斑数来增强羊草植株对这3种病原菌的抗性。由此看来,内生真菌E.bromicola对宿主植物羊草在抗病原菌侵染方面有一定的增益作用。  相似文献   

8.
An elevated growth temperature often inhibits plant defense responses and renders plants more susceptible to pathogens. However, the molecular mechanisms underlying this modulation are unknown. To genetically dissect this regulation, we isolated mutants that retain disease resistance at a higher growth temperature in Arabidopsis. One such heat-stable mutant results from a point mutation in SNC1, a NB-LRR encoding gene similar to disease resistance (R) genes. Similar mutations introduced into a tobacco R gene, N, confer defense responses at elevated temperature. Thus R genes or R-like genes involved in recognition of pathogen effectors are likely the causal temperature-sensitive component in defense responses. This is further supported by snc1 intragenic suppressors that regained temperature sensitivity in defense responses. In addition, the SNC1 and N proteins had a reduction of nuclear accumulation at elevated temperature, which likely contributes to the inhibition of defense responses. These findings identify a plant temperature sensitive component in disease resistance and provide a potential means to generate plants adapting to a broader temperature range.  相似文献   

9.
In recent years, different classes of proteins have been reported to promote toxic effects when ingested. Type-2 ribosome-inactivating proteins (RIPs) are a group of chimeric proteins built up of an A-chain with RNA N-glycosidase activity and a B-chain with lectin activity. These proteins are thought to play a role in plant protection. Sambucus nigra agglutinin I (SNA-I) is a type-2 RIP, isolated from the bark of elderberry (S. nigra L.). This study demonstrated the insecticidal potency of SNA-I on two Hemipteran insect species using two different methods. An artificial diet supplemented with different concentrations of the purified RIP reduced survival and fecundity of pea aphids Acyrthosiphon pisum. In addition, feeding of tobacco aphids, Myzus nicotianae, on leaves from transfected plants constitutively expressing SNA-I, resulted in a delayed development and reduced adult survival and also the fertility parameters of the surviving aphids were reduced, suggesting that a population of aphids would build up significantly slower on plants expressing SNA-I. Finally, a series of experiments with transgenic lines in which a mutant RIP was expressed, revealed that the carbohydrate-binding activity of SNA-I is necessary for its insecticidal activity. In a first set of mutants, the B-chain was mutated at one position (Asp231ΔGlu), and in the second set both carbohydrate-binding sites were mutated (Asn48ΔSer and Asp231ΔGlu). Mutation of one carbohydrate-binding site strongly reduced the insecticidal activity of SNA-I, whereas mutation of both lectin sites (almost) completely abolished the SNA-I effect on tobacco aphids.  相似文献   

10.
Maize β-glucosidase aggregating factor (BGAF) and its homolog Sorghum Lectin (SL) are modular proteins consisting of an N-terminal dirigent domain and a C-terminal jacalin-related lectin (JRL) domain. BGAF is a polyspecific lectin with a monosaccharide preference for galactose, whereas SL displays preference for GalNAc. Here, we report that deletion of the N-terminal dirigent domain in the above lectins dramatically changes their sugar-specificities. Deletions in the N-terminal region of the dirigent domain of BGAF abolished binding to galactose/lactose, but binding to mannose was unaffected. Glucose, which was a poor inhibitor of hemagglutinating activity of BGAF, displayed higher inhibitory effect on the hemagglutinating activity of deletion mutants. Deletion of the dirigent domain in SL abolished binding to GalNAc, but binding to mannose was not affected. Surprisingly, fructose, an extremely poor inhibitor (minimum inhibitory concentration (MIC) = 125 mM) of SL hemagglutinating activity, was found to be a very potent inhibitor (MIC = 1 mM) of hemagglutinating activity of its JRL domain. These results indicate that the dirigent domain in this class of modular lectins, at least in the case of maize BGAF and SL, influences sugar specificity.  相似文献   

11.
12.
13.
The most common response of a host to pathogens is arguably the asymptomatic response. However, the genetic and molecular mechanisms responsible for asymptomatic responses to pathogens are poorly understood. Here we report on the genetic cloning of two genes controlling the asymptomatic response to tobacco mosaic virus (TMV) in cultivated tobacco (Nicotiana tabacum). These two genes are homologous to tobamovirus multiplication 2A (TOM2A) from Arabidopsis, which was shown to be critical for the accumulation of TMV. Expression analysis indicates that the TOM2A genes might play fundamental roles in plant development or in responses to stresses. Consistent with this hypothesis, a null allele of the TOM2A ortholog in tomato (Solanum lycopersicum) led to the development of bent branches and a high tolerance to both TMV and tomato mosaic virus (ToMV). However, the TOM2A ortholog in Nicotiana glauca did not account for the asymptomatic response to TMV in N. glauca. We showed that TOM2A family is plant-specific and originated from Chlorophyte, and the biological functions of TOM2A orthologs to promote TMV accumulation are highly conserved in the plant kingdom—in both TMV host and nonhost species. In addition, we showed that the interaction between tobacco TOM1 and TOM2A orthologs in plant species is conserved, suggesting a conserved nature of TOM1–TOM2A module in promoting TMV multiplication in plants. The tradeoff between host development, the resistance of hosts to pathogens, and their influence on gene evolution are discussed. Our results shed light on mechanisms that contribute to asymptomatic responses to viruses in plants and provide approaches for developing TMV/ToMV-resistant crops.

Tobacco TOBAMOVIRUS MULTIPLICATION 2A homologs control the asymptomatic response to tobacco mosaic virus and have highly conserved biological functions related to virus multiplication.  相似文献   

14.
Jacalin-related lectins (JRLs) are a subgroup of proteins with one or more jacalin-like lectin domains. Although JRLs are often associated with biotic or abiotic stimuli, their biological functions in plants, as well as their relationships to plant disease resistance, are poorly understood. A mannose-specific JRL (mJRL)-like gene (TaJRLL1) that is mainly expressed in stem and spike and encodes a protein with two jacalin-like lectin domains was identified in wheat. Pathogen infection and phytohormone treatments induced its expression; while application of the salicylic acid (SA) biosynthesis inhibitor paclobutrazol and the jasmonic acid (JA) biosynthesis inhibitor diethyldithiocarbamic acid, respectively, substantially inhibited its expression. Attenuating TaJRLL1 through virus-induced gene silencing increased susceptibility to the facultative fungal pathogen Fusarium graminearum and the biotrophic fungal pathogen Blumeria graminis. Arabidopsis thaliana transformed with TaJRLL1 displayed increased resistance to F. graminearum and Botrytis cinerea. JA and SA levels in transgenic Arabidopsis increased significantly. A loss or increase of disease resistance due to an alteration in TaJRLL1 function was correlated with attenuation or enhancement of the SA- and JA-dependent defence signalling pathways. These results suggest that TaJRLL1 could be a component of the SA- and JA-dependent defence signalling pathways.  相似文献   

15.
Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA–synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.  相似文献   

16.
NICTABA is a carbohydrate-binding protein (also called lectin) that is expressed in several Nicotiana species after treatment with jasmonates and insect herbivory. Analyses with tobacco lines overexpressing the NICTABA gene as well as lines with reduced lectin expression have shown the entomotoxic effect of NICTABA against Lepidopteran larvae, suggesting a role of the lectin in plant defense. Until now, little is known with respect to the upstream regulatory mechanisms that are controlling the expression of inducible plant lectins. Using Arabidopsis thaliana plants stably expressing a promoter-β-glucuronidase (GUS) fusion construct, it was shown that jasmonate treatment influenced the NICTABA promoter activity. A strong GUS staining pattern was detected in very young tissues (the apical and root meristems, the cotyledons and the first true leaves), but the promoter activity decreased when plants were getting older. NICTABA was also expressed at low concentrations in tobacco roots and expression levels increased after cold treatment. The data presented confirm a jasmonate-dependent response of the promoter sequence of the tobacco lectin gene in Arabidopsis. These new jasmonate-responsive tobacco promoter sequences can be used as new tools in the study of jasmonate signalling related to plant development and defense.  相似文献   

17.
Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetrate plant tissues and to stimulate basal resistance of plants. Novel protection mechanisms involving the phytohormone abscisic acid appear to play key roles in the biocontrol of wilt disease induced by Ralstonia solanacearum in Arabidopsis thaliana. Fully understanding these mechanisms and extending the studies to other pathosystems are still required to evaluate their importance in disease protection.  相似文献   

18.
Programmed cell death (PCD) is the main defense mechanism in plants to fight various pathogens including viruses. The best-studied example of virus-induced PCD in plants is Tobacco mosaic virus (TMV)-elicited hypersensitive response in tobacco plants containing the N resistance gene. It was previously reported that the animal mitochondrial protein Bcl-xL, which lacks a homolog in plants, effectively suppresses plant PCD induced by TMV p50 — the elicitor of hyper-sensitive response in Nicotiana tabacum carrying the N gene. Our studies show that the mitochondria-targeted antioxidant SkQ1 effectively suppresses p50-induced PCD in tobacco plants. On the other hand, SkQ1 did not affect Poa semilatent virus TGB3-induced endoplasmic reticulum stress, which is followed by PCD, in Nicotiana benthamiana epidermal cells. These data suggest that mitochondria-targeted antioxidant SkQ1 can be used to study molecular mechanisms of PCD suppression in plants.  相似文献   

19.
L-type lectin receptor kinase (LecRK) proteins are an important family involved in diverse biological processes such as pollen development, senescence, wounding, salinity and especially in innate immunity in model plants such as Arabidopsis and tobacco. Till date, LecRK proteins or genes of cucumber have not been reported. In this study, a total of 25 LecRK genes were identified in the cucumber genome, unequally distributed across its seven chromosomes. According to similarity comparison of their encoded proteins, the Cucumis sativus LecRK (CsLecRK) genes were classified into six major clades (from Clade I to CladeVI). Expression of CsLecRK genes were tested using QRT-PCR method and the results showed that 25 CsLecRK genes exhibited different responses to abiotic (water immersion) and biotic (Phytophthora melonis and Phytophthora capsici inoculation) stresses, as well as that between disease resistant cultivar (JSH) and disease susceptible cultivar (B80). Among the 25 CsLecRK genes, we found CsLecRK6.1 was especially induced by P. melonis and P. capsici in JSH plants. All these results suggested that CsLecRK genes may play important roles in biotic and abiotic stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号