共查询到20条相似文献,搜索用时 0 毫秒
1.
Yewon Cheon Hyung-Wook Kim Miki Igarashi Hiren R. Modi Lisa Chang Kaizong Ma Deanna Greenstein Mary Wohltmann John Turk Stanley I. Rapoport Ameer Y. Taha 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(9):1278-1286
Calcium-independent phospholipase A2 group VIA (iPLA2β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA2β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA2β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA2β+/+) and knockout (iPLA2β−/−) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA2, cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA2β+/+ mice, iPLA2β−/− mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA2β−/− mice, brain levels of iPLA2β mRNA, protein, and activity were decreased, as was the iPLA2γ (Group VIB PLA2) mRNA level, while levels of secretory sPLA2-V mRNA, protein, and activity and cytosolic cPLA2-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA2β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations. 相似文献
2.
Constantinos C. Tellis Alexandros D. Tselepis 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(5):327-338
Platelet-activating factor (PAF) acetylhydrolase exhibits a Ca2+-independent phospholipase A2 activity and degrades PAF as well as oxidized phospholipids (oxPL). Such phospholipids are accumulated in the artery wall and may play key roles in vascular inflammation and atherosclerosis. PAF-acetylhydrolase in plasma is complexed to lipoproteins; thus it is also referred to as lipoprotein-associated phospholipase A2 (Lp-PLA2). Lp-PLA2 is primarily associated with low-density lipoprotein (LDL), whereas a small proportion of circulating enzyme activity is also associated with high-density lipoprotein (HDL). Τhe majority of the LDL-associated Lp-PLA2 (LDL-Lp-PLA2) activity is bound to atherogenic small-dense LDL particles and it is a potential marker of these particles in plasma. The distribution of Lp-PLA2 between LDL and HDL is altered in various types of dyslipidemias. It can be also influenced by the presence of lipoprotein (a) [Lp(a)] when plasma levels of this lipoprotein exceed 30 mg/dl. Several lines of evidence suggest that the role of plasma Lp-PLA2 in atherosclerosis may depend on the type of lipoprotein particle with which this enzyme is associated. In this regard, data from large Caucasian population studies have shown an independent association between the plasma Lp-PLA2 levels (which are mainly influenced by the levels of LDL-Lp-PLA2) and the risk of future cardiovascular events. On the contrary, several lines of evidence suggest that HDL-associated Lp-PLA2 may substantially contribute to the HDL antiatherogenic activities. Recent studies have provided evidence that oxPL are preferentially sequestered on Lp(a) thus subjected to degradation by the Lp(a)-associated Lp-PLA2. These data suggest that Lp(a) may be a potential scavenger of oxPL and provide new insights into the functional role of Lp(a) and the Lp(a)-associated Lp-PLA2 in normal physiology as well as in inflammation and atherosclerosis. The present review is focused on recent advances concerning the Lp-PLA2 structural characteristics, the molecular basis of the enzyme association with distinct lipoprotein subspecies, as well as the potential role of Lp-PLA2 associated with different lipoprotein classes in atherosclerosis and cardiovascular disease. 相似文献
3.
Jorge Murillo Estela Maldonado M Carmen Barrio Aurora Del Río Yamila López Elena Martínez-Sanz Ignacio González Concepción Martín Inmaculada Casado Concepción Martínez-Álvarez 《Differentiation; research in biological diversity》2009
In recent decades, studies have shown that both TGF-β1 and TGF-β3 play an important role in the induction of medial edge epithelium (MEE) cell death and palatal fusion. Many of these experiments involved the addition or blockage of one of these growth factors in wild-type (WT) mouse palate cultures, where both TGF-β1 and TGF-β3 are present. Few studies have addressed the existence of interactions between TGF-β1 and TGF-β3, which could modify their individual roles in MEE cell death during palatal fusion. We carried out several experiments to test this possibility, and to investigate how this could influence TGF-β1 and TGF-β3 actions on MEE cell death and palatal shelf fusion. We double-immunolabelled developing mouse palates with anti-TGF-β1 or anti-TGF-β3 antibodies and TUNEL, added rhTGF-β1 or rhTGF-β3 or blocked the TGF-β1 and TGF-β3 action at different concentrations to WT or Tgf-β3 null mutant palate cultures, performed in situ hybridizations with Tgf-β1 or Tgf-β3 riboprobes, and measured the presence of TUNEL-positive midline epithelial seam (MES) cells and MES disappearance (palatal shelf fusion) in the different in vitro conditions. By combining all these experiments, we demonstrate great interaction between TGF-β1 and TGF-β3 in the developing palate and confirm that TGF-β3 has a more active role in MES cell death than TGF-β1, although both are major inductors of MES disappearance. Finally, the co-localization of TGF-β1, but not TGF-β3, with TUNEL in the MES allows us to suggest a possible role for TGF-β1 in MES apoptotic clearance. 相似文献
4.
Song H Wohltmann M Tan M Bao S Ladenson JH Turk J 《The Journal of biological chemistry》2012,287(8):5528-5541
Group VIA phospholipase A(2) (iPLA(2)β) in pancreatic islet β-cells participates in glucose-stimulated insulin secretion and sarco(endo)plasmic reticulum ATPase (SERCA) inhibitor-induced apoptosis, and both are attenuated by pharmacologic or genetic reductions in iPLA(2)β activity and amplified by iPLA(2)β overexpression. While exploring signaling events that occur downstream of iPLA(2)β activation, we found that p38 MAPK is activated by phosphorylation in INS-1 insulinoma cells and mouse pancreatic islets, that this increases with iPLA(2)β expression level, and that it is stimulated by the iPLA(2)β reaction product arachidonic acid. The insulin secretagogue D-glucose also stimulates β-cell p38 MAPK phosphorylation, and this is prevented by the iPLA(2)β inhibitor bromoenol lactone. Insulin secretion induced by d-glucose and forskolin is amplified by overexpressing iPLA(2)β in INS-1 cells and in mouse islets, and the p38 MAPK inhibitor PD169316 prevents both responses. The SERCA inhibitor thapsigargin also stimulates phosphorylation of both β-cell MAPK kinase isoforms and p38 MAPK, and bromoenol lactone prevents both events. Others have reported that iPLA(2)β products activate Rho family G-proteins that promote MAPK kinase activation via a mechanism inhibited by Clostridium difficile toxin B, which we find to inhibit thapsigargin-induced β-cell p38 MAPK phosphorylation. Thapsigargin-induced β-cell apoptosis and ceramide generation are also prevented by the p38 MAPK inhibitor PD169316. These observations indicate that p38 MAPK is activated downstream of iPLA(2)β in β-cells incubated with insulin secretagogues or thapsigargin, that this requires prior iPLA(2)β activation, and that p38 MAPK is involved in the β-cell functional responses of insulin secretion and apoptosis in which iPLA(2)β participates. 相似文献
5.
Cytokinins (CKs) are a large group of plant hormones which play a crucial role in many physiological processes in plants. One of the interesting functions of CKs is the control of programmed cell death (PCD). It seems that all CKs-dependent phenomena including PCD are accompanied by special multi-step phosphorelay signaling pathway. This pathway consists of three elements: histidine kinase receptors (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs). This review shows the résumé of the latest knowledge about CKs signaling pathways in many physiological processes in plants with special attention paid to PCD process. 相似文献
6.
Cytosolic phospholipase A2α (cPLA2α, Group IVA phospholipase A2) is a central mediator of arachidonate release from cellular phospholipids for the biosynthesis of eicosanoids. cPLA2α translocates to intracellular membranes including the Golgi in response to a rise in intracellular calcium level. The enzyme’s calcium-dependent phospholipid-binding C2 domain provides the targeting specificity for cPLA2α translocation to the Golgi. However, other features of cPLA2α regulation are incompletely understood such as the role of phosphorylation of serine residues in the catalytic domain and the function of basic residues in the cPLA2α C2 and catalytic domains that are proposed to interact with anionic phospholipids in the membrane to which cPLA2α is targeted. Increasing evidence strongly suggests that cPLA2α plays a role in regulating Golgi structure, tubule formation and intra-Golgi transport. For example, recent data suggests that cPLA2α regulates the transport of tight junction and adherens junction proteins through the Golgi to cell–cell contacts in confluent endothelial cells. However, there are now examples where data based on knockdown using siRNA or pharmacological inhibition of enzymatic activity of cPLA2α affects fundamental cellular processes yet these phenotypes are not observed in cells from cPLA2α deficient mice. These results suggest that in some cases there may be compensation for the lack of cPLA2α. Thus, there is continued need for studies employing highly specific cPLA2α antagonists in addition to genetic deletion of cPLA2α in mice. 相似文献
7.
Baldwin AC Green CD Olson LK Moxley MA Corbett JA 《American journal of physiology. Endocrinology and metabolism》2012,302(11):E1390-E1398
Exposure of insulin-producing cells to elevated levels of the free fatty acid (FFA) palmitate results in the loss of β-cell function and induction of apoptosis. The induction of endoplasmic reticulum (ER) stress is one mechanism proposed to be responsible for the loss of β-cell viability in response to palmitate treatment; however, the pathways responsible for the induction of ER stress by palmitate have yet to be determined. Protein palmitoylation is a major posttranslational modification that regulates protein localization, stability, and activity. Defects in, or dysregulation of, protein palmitoylation could be one mechanism by which palmitate may induce ER stress in β-cells. The purpose of this study was to evaluate the hypothesis that palmitate-induced ER stress and β-cell toxicity are mediated by excess or aberrant protein palmitoylation. In a concentration-dependent fashion, palmitate treatment of RINm5F cells results in a loss of viability. Similar to palmitate, stearate also induces a concentration-related loss of RINm5F cell viability, while the monounsaturated fatty acids, such as palmoleate and oleate, are not toxic to RINm5F cells. 2-Bromopalmitate (2BrP), a classical inhibitor of protein palmitoylation that has been extensively used as an inhibitor of G protein-coupled receptor signaling, attenuates palmitate-induced RINm5F cell death in a concentration-dependent manner. The protective effects of 2BrP are associated with the inhibition of [(3)H]palmitate incorporation into RINm5F cell protein. Furthermore, 2BrP does not inhibit, but appears to enhance, the oxidation of palmitate. The induction of ER stress in response to palmitate treatment and the activation of caspase activity are attenuated by 2BrP. Consistent with protective effects on insulinoma cells, 2BrP also attenuates the inhibitory actions of prolonged palmitate treatment on insulin secretion by isolated rat islets. These studies support a role for aberrant protein palmitoylation as a mechanism by which palmitate enhances ER stress activation and causes the loss of insulinoma cell viability. 相似文献
8.
Hiroyuki Nakamura Eiko Tada Tomohiko Makiyama Kana Yasufuku Toshihiko Murayama 《Archives of biochemistry and biophysics》2011,(1):45
Ceramide-1-phosphate (C1P), produced by ceramide kinase (CERK), is implicated in the regulation of many biological functions including cell growth and inflammation. C1P is a direct activator of group IVA cytosolic phospholipsase A2 (PLA2G4A or cPLA2α). Although activation of the CERK–C1P pathway causes mitogenic and cytoprotective responses in many cells, the pathway shows cytotoxicity in several cells and the precise mechanism has not been elucidated. In the present study, we examined the effect of human CERK (hCERK) expression on cytotoxicity in two cell lines. Expression of hCERK in CHO cells caused cell rounding and lactate dehydrogenase (LDH) leakage, and co-addition of ceramide enhanced these responses. Expression of hCERK enhanced C1P formation and release of arachidonic acid in Ca2+ ionophore-stimulated cells. Treatment with 20 μM C2-C1P for 24 h caused cell rounding, and the response was significantly decreased by an inhibitor of cPLA2α. In L929 cells, expression of hCERK with and without ceramide caused cell rounding and LDH leakage, respectively, and the responses were significantly less in a stable clone of L929 cells lacking cPLA2α. These findings suggest the involvement of cPLA2α in CERK–C1P pathway-induced cytotoxicity. 相似文献
9.
10.
Haowei Song Shunzhong BaoXiaoyong Lei Chun JinSheng Zhang John TurkSasanka Ramanadham 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(5):547-558
Over the past decade, important roles for the 84–88 kDa Group VIA Ca2+-independent phospholipase A2 (iPLA2β) in various organs have been described. We demonstrated that iPLA2β participates in insulin secretion, insulinoma cells and native pancreatic islets express full-length and truncated isoforms of iPLA2β, and certain stimuli promote perinuclear localization of iPLA2β. To gain a better understanding of its mobilization, iPLA2β was expressed in INS-1 cells as a fusion protein with EGFP, enabling detection of subcellular localization of iPLA2β by monitoring EGFP fluorescence. Cells stably-transfected with fusion protein expressed nearly 5-fold higher catalytic iPLA2β activity than control cells transfected with EGFP cDNA alone, indicating that co-expression of EGFP does not interfere with manifestation of iPLA2β activity. Dual fluorescence monitoring of EGFP and organelle Trackers combined with immunoblotting analyses revealed expression of truncated iPLA2β isoforms in separate subcellular organelles. Exposure to secretagogues and induction of ER stress are known to activate iPLA2β in β-cells and we find here that these stimuli promote differential localization of iPLA2β in subcellular organelles. Further, mass spectrometric analyses identified iPLA2β variants from which N-terminal residues were removed. Collectively, these findings provide evidence for endogenous proteolytic processing of iPLA2β and redistribution of iPLA2β variants in subcellular compartments. It might be proposed that in vivo processing of iPLA2β facilitates its participation in multiple biological processes. 相似文献
11.
Yo Isogai Wataru Nagata Toshio Wakabayashi Masayuki Narisada Yoshio Hayase Susumu Kamata Toshihiko Okamoto Koichi Shudo Masanori Somei 《Phytochemistry》1974,13(2):337-339
The activities of (±)-gibberellin A15 ((±)-GA15) and (±)-gibberellin A15-isolactone ((±)-iso-GA15) which were obtained by stereocontrolled total synthesis and gibberellin A15 (E-GA15) synthesized by interconversion of enmein were assayed by the rice seedling test. As expected, (±)-GA15 showed half the activity of natural gibberellin A15 (GA15). E-GA15 which has a natural configuration showed the same activity as natural gibberellin A15 while (±)-iso-GA15 was almost inactive. These samples were also submitted to the cucumber hypocotyl assay. Contrary to what has already been reported, they were almost inactive. 相似文献
12.
Suzanne E. Barbour Phuong T. Nguyen Margaret Park Bhargavi Emani Xiaoyong Lei Mamatha Kambalapalli Jacqueline C. Shultz Dayanjan Wijesinghe Charles E. Chalfant Sasanka Ramanadham 《The Journal of biological chemistry》2015,290(17):11021-11031
Diabetes is a consequence of reduced β-cell function and mass, due to β-cell apoptosis. Endoplasmic reticulum (ER) stress is induced during β-cell apoptosis due to various stimuli, and our work indicates that group VIA phospholipase A2β (iPLA2β) participates in this process. Delineation of underlying mechanism(s) reveals that ER stress reduces the anti-apoptotic Bcl-x(L) protein in INS-1 cells. The Bcl-x pre-mRNA undergoes alternative pre-mRNA splicing to generate Bcl-x(L) or Bcl-x(S) mature mRNA. We show that both thapsigargin-induced and spontaneous ER stress are associated with reductions in the ratio of Bcl-x(L)/Bcl-x(S) mRNA in INS-1 and islet β-cells. However, chemical inactivation or knockdown of iPLA2β augments the Bcl-x(L)/Bcl-x(S) ratio. Furthermore, the ratio is lower in islets from islet-specific RIP-iPLA2β transgenic mice, whereas islets from global iPLA2β−/− mice exhibit the opposite phenotype. In view of our earlier reports that iPLA2β induces ceramide accumulation through neutral sphingomyelinase 2 and that ceramides shift the Bcl-x 5′-splice site (5′SS) selection in favor of Bcl-x(S), we investigated the potential link between Bcl-x splicing and the iPLA2β/ceramide axis. Exogenous C6-ceramide did not alter Bcl-x 5′SS selection in INS-1 cells, and neutral sphingomyelinase 2 inactivation only partially prevented the ER stress-induced shift in Bcl-x splicing. In contrast, 5(S)-hydroxytetraenoic acid augmented the ratio of Bcl-x(L)/Bcl-x(S) by 15.5-fold. Taken together, these data indicate that β-cell apoptosis is, in part, attributable to the modulation of 5′SS selection in the Bcl-x pre-mRNA by bioactive lipids modulated by iPLA2β. 相似文献
13.
Oligomeric amyloid-β peptide (Aβ) is known to induce cytotoxic effects and to damage cell functions in Alzheimer's disease. However, mechanisms underlying the effects of Aβ on cell membranes have yet to be fully elucidated. In this study, Aβ 1-42 (Aβ42) was shown to cause a temporal biphasic change in membranes of astrocytic DITNC cells using fluorescence microscopy of Laurdan. Aβ42 made astrocyte membranes became more molecularly-disordered within the first 30 min to 1 h, but gradually changed to more molecularly-ordered after 3 h. However, Aβ42 caused artificial membranes of vesicles made of rat whole brain lipid extract to become more disordered only. The trend for more molecularly-ordered membranes in astrocytes induced by Aβ42 was abrogated by either an NADPH oxidase inhibitor, apocynin, or an inhibitor of cytosolic phospholipase A2 (cPLA2), but not by an inhibitor of calcium-independent PLA2 (iPLA2). Apocynin also suppressed the increased production of superoxide anions (O2−) and phosphorylation of cPLA2 induced by Aβ42. In addition, hydrolyzed products of cPLA2, arachidonic acid (AA), but not lysophosphatidylcholine (LPC) caused astrocyte membranes to become more molecularly-ordered. These results suggest (1) a direct interaction of Aβ42 with cell membranes making them more molecularly-disordered, and (2) Aβ42 also indirectly makes membranes become more molecularly-ordered by triggering the signaling pathway involving NADPH oxidase and cPLA2 in astrocytes. 相似文献
14.
Diabetes is a metabolic disease affecting nearly 300 million individuals worldwide. Both types of diabetes (1 and 2) are characterized by loss of functional pancreatic β-cell mass causing different degrees of insulin deficiency. The Bcl-2 family has a double-edged effect in diabetes. These proteins are crucial controllers of the mitochondrial pathway of β-cell apoptosis induced by pro-inflammatory cytokines or lipotoxicity. In parallel, some Bcl-2 members also regulate glucose metabolism and β-cell function. In this review, we describe the role of Bcl-2 proteins in β-cell homeostasis and death. We focus on how these proteins interact, their contribution to the crosstalk between endoplasmic reticulum stress and mitochondrial permeabilization, their context-dependent usage following different pro-apoptotic stimuli, and their role in β-cell physiology. 相似文献
15.
Sheng Hua Mu Yao Soma Vignarajan Paul Witting Leila Hejazi Zhen Gong Ying Teng Marzieh Niknami Stephen Assinder Des Richardson Qihan Dong 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(6):1146-1157
Constitutive phosphorylation of protein kinase B (AKT) is a common feature of cancer caused by genetic alteration in the phosphatase and tensin homolog (PTEN) gene and is associated with poor prognosis. This study determined the role of cytosolic phospholipase A2α (cPLA2α) in AKT, extracellular signal-regulated kinase (ERK) and androgen receptor (AR) signaling in PTEN-null/mutated prostate cancer cells. Doxycycline (Dox)-induced expression of cPLA2α led to an increase in pAKT, pGSK3β and cyclin D1 levels in LNCaP cells that possess a PTEN frame-shift mutation. In contrast, silencing cPLA2α expression with siRNA decreased pAKT, pGSK3β and cyclin D1 levels in both PC-3 (PTEN deletion) and LNCaP cells. Silencing of cPLA2α decreased pERK and AR protein levels. The inhibitory effect of cPLA2α siRNA on pAKT and AR protein levels was reduced by the addition of arachidonic acid (AA), whereas the stimulatory effect of AA on pAKT, pERK and AR levels was decreased by an inhibitor of 5-hydroxyeicosatetraenoic acid production. Pharmacological blockade of cPLA2α with Efipladib reduced pAKT and AR levels with a concomitant inhibition of PC-3 and LNCaP cell proliferation. These results demonstrate an important role for cPLA2α in sustaining AKT, ERK and AR signaling in PTEN-null/mutated prostate cancer cells and provide a potential molecular target for treating prostate cancer. 相似文献
16.
In potato (Solanum tuberosum L.) suspension cells, the expression of the gene encoding alternative oxidase (AOX) and H2O2 accumulation were induced by treatment with -glucan elicitor. The inhibition of catalase activity enhanced both AOX mRNA expression and the production of H2O2, whereas the ascorbate peroxidase inhibitor did not have any effect on these responses. Simultaneous inhibition of catalase and AOX activities in elicited cells dramatically increased H2O2 accumulation, leading to the disruption of mitochondrial membrane potential (m) and programmed cell death (PCD). The results demonstrate, for the first time, that not only AOX but also catalase plays a central role in the suppression of mitochondrial m breakdown and PCD induced by -glucan elicitor. 相似文献
17.
Liz Kisslov Nurit HadadMarina Rosengraten Rachel Levy 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(9):1224-1234
Cytosolic phospholipase A2α (cPLA2α) up-regulation has been reported in human colorectal cancer cells, thus we aimed to elucidate its role in the proliferation of the human colorectal cancer cell line, HT-29. EGF caused a rapid activation of cPLA2α which coincided with a significant increase in cell proliferation. The inhibition of cPLA2α activity by pyrrophenone or by antisense oligonucleotide against cPLA2α (AS) or inhibition of prostaglandin E2 (PGE2) production by indomethacin resulted with inhibition of cell proliferation, that was restored by addition of PGE2. The secreted PGE2 activated both protein kinase A (PKA) and PKB/Akt pathways via the EP2 and EP4 receptors. Either, the PKA inhibitor (H-89) or the PKB/Akt inhibitor (Ly294002) caused a partial inhibition of cell proliferation which was restored by PGE2. But, inhibited proliferation in the presence of both inhibitors could not be restored by addition of PGE2. AS or H-89, but not Ly294002, inhibited CREB activation, suggesting that CREB activation is mediated by PKA. AS or Ly294002, but not H-89, decreased PKB/Akt activation as well as the nuclear localization of β-catenin and cyclin D1 and increased the plasma membrane localization of β-catenin with E-cadherin, suggesting that these processes are regulated by the PKB pathway. Similarly, Caco-2 cells exhibited cPLA2α dependent proliferation via activation of both PKA and PKB/Akt pathways. In conclusion, our findings suggest that the regulation of HT-29 proliferation is mediated by cPLA2α-dependent PGE2 production. PGE2via EP induces CREB phosphorylation by the PKA pathway and regulates β-catenin and cyclin D1 cellular localization by PKB/Akt pathway. 相似文献
18.
When cells are induced to undergo apoptosis in the presence of general caspase inhibitors and then returned to their normal growth environment, there follows an extended period of life during which the entire cohort of mitochondria (including mitochondrial DNA) disappears from the cells. This phenomenon is widespread; it occurs in NGF-deprived sympathetic neurons, in NGF-maintained neurons treated with cytosine arabinoside, and in diverse cell lines treated with staurosporine, including HeLa, CHO, 3T3 and Rat 1 cells. Mitochondrial removal is highly selective since the structure of all other organelles remains unperturbed. Since Bcl2 overexpression blocks the removal of mitochondria without preventing death-inducing signals, it appears that the mitochondria are responsible for initiating their own demise. Degradation of mitochondria is not in itself a rare event. It occurs in large part by autophagy during normal cell house-keeping, during ecdysis in insects, as well as after induction of apoptosis. However, the complete and selective removal of an entire cohort of mitochondria in otherwise living mammalian cells has not been described previously. These findings raise several questions. What are the mechanisms which remove mitochondria in such a 'clean' fashion? What are the signals that target mitochondria for such selective degradation? How are cells that have lost their mitochondria different from rho0 cells (which retain mitochondria but lack mitochondrial DNA, and cannot carry out oxidative phosphorylation)? Are the cells which have lost mitochondria absolutely committed to die or might they be repaired by mitochondrial therapy? The answers will be especially relevant when considering treatment of diseases affecting long-lived and non-renewable organs such as the nervous system. 相似文献
19.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2019,1864(6):861-868
Calcium-independent phospholipase A2γ (iPLA2γ)/patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is one of the iPLA2 enzymes, which do not require Ca2+ ion for their activity. iPLA2γ is a membrane-bound enzyme with unique features, including the utilization of four distinct translation initiation sites and the presence of mitochondrial and peroxisomal localization signals. This enzyme is preferentially distributed in the mitochondria and peroxisomes and is thought to be responsible for the maintenance of lipid homeostasis in these organelles. Thus, both the overexpression and the deletion of iPLA2γ in vivo caused mitochondrial abnormalities and dysfunction. Roles of iPLA2γ in lipid mediator production and cytoprotection against oxidative stress have also been suggested by in vitro and in vivo studies. The dysregulation of iPLA2γ can therefore be a critical factor in the development of many diseases, including metabolic diseases and cancer. In this review, we provide an overview of the biochemical properties of iPLA2γ and then summarize the current understanding of the in vivo roles of iPLA2γ revealed by knockout mouse studies. 相似文献
20.
Reaction of [Pt2(μ-S)2(PPh3)4] with a range of zinc(II) and cobalt(II) complexes ML2, where L is a β-diketonate ligand CH3COCHCOCH3, PhCOCHCOPh, CF3COCHCOTh (Th = 2-thienyl)] permits the synthesis of adducts [Pt2(μ-S)2(PPh3)4M(diketonate)]+, isolated as their salts in moderate yields. The cobalt and zinc acetylacetonate complexes were characterised by single-crystal X-ray diffraction studies, which reveal isomorphous structures, with tetrahedral heterometal centres. 相似文献