共查询到20条相似文献,搜索用时 15 毫秒
1.
The selectivity filter and adjacent regions in the bacterial KcsA and inwardly rectifying K+ (Kir) channels reveal significant conformational changes that cause the channel pore to transition from an activated to inactive state (C-type inactivation) once the channel is open. The meshwork of residues stabilizing the pore of KcsA involves Glu71–Asp80 carboxyl–carboxylate interaction ‘behind’ the selectivity filter. Interestingly, the Kir channels do not have this exact interaction, but instead have a Glu–Arg salt bridge where the Glu is in the same position but the Arg is one position N-terminal compared to the Asp in KcsA. Also, the Kir channels lack the Trp that hydrogen bonds to Asp80 in KcsA. Here, the sequence and structural information are combined to understand the dissimilarity in the role of the pore-helix Glu in stabilizing the pore structure in KcsA and Kir channels. This review illustrates that although Glu is quite conserved among both types of channels, the network of interactions is not translatable from one channel to the other; thereby suggesting a unique phenomenon of diverse gating patterns in K+ channels. 相似文献
2.
Alisher M. Kariev 《生物化学与生物物理学报:生物膜》2007,1768(5):1218-1229
A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K+ channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280 (1998) 69-77; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106-109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523-526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a “basket” under the Q119 side chains, blocking the channel. When a hydrated K+ approaches this “basket”, the optimized system shows a strong set of hydrogen bonds with the K+ at defined positions, preventing further approach of the K+ to the basket. This optimized structure with hydrated K+ added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The “basket” itself appears to be very stable, although it is possible that the K+ with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103/1-4]. It also agrees qualitatively with simulations on channels [A. Anishkin, S. Sukharev, Water dynamics and dewetting transitions in the small mechanosensitive channel MscS, Biophys. J. 86 (2004) 2883-2895; O. Beckstein, M.S.P. Sansom, Liquid-vapor oscillations of water in hydrophobic nanopores, Proc. Natl Acad. Sci. U. S. A. 100 (2003) 7063-7068] and on featureless channel-like systems [J. Lu, M.E. Green, Simulation of water in a pore with charges: application to a gating mechanism for ion channels, Prog. Colloid Polym. Sci. 103 (1997) 121-129], in that it forms a boundary on water that is not obvious from the liquid state. The idea that a structure is stable, even if individual molecules exchange, is well known, for example from the hydration shell of ions. We show that when charges are added in the form of protons to the domains (one proton per domain), the optimized structure is open. No stable water hydrogen bonds hold it together; an opening of 11.0 Å appears, measured diagonally between non-neighboring domains as glutamine 119 carbonyl O-O distance. This is comparable to the opening in the MthK potassium channel structure that is generally agreed to be open. The appearance of the opening is in rather good agreement with that found by Perozo and coworkers. In contrast, in the uncharged structure this diagonal distance is 6.5 Å, and the water “basket” constricts the uncharged opening still further, with the ice-like structure that couples the K+ ion to the gating region freezing the entrance to the channel. Comparison with our earlier model for voltage gated channels suggests that a similar mechanism may apply in those channels. 相似文献
3.
Recent molecular dynamic simulations and electrostatic calculations suggested that the external TEA binding site in K+ channels is outside the membrane electric field. However, it has been known for some time that external TEA block of Shaker K+ channels is voltage dependent. To reconcile these two results, we reexamined the voltage dependence of block of Shaker K+ channels by external TEA. We found that the voltage dependence of TEA block all but disappeared in solutions in which K+ ions were replaced by Rb+. These and other results with various concentrations of internal K+ and Rb+ ions suggest that the external TEA binding site is not within the membrane electric field and that the voltage dependence of TEA block in K+ solutions arises through a coupling with the movement of K+ ions through part of the membrane electric field. Our results suggest that external TEA block is coupled to two opposing voltage-dependent movements of K+ ions in the pore: (a) an inward shift of the average position of ions in the selectivity filter equivalent to a single ion moving approximately 37% into the pore from the external surface; and (b) a movement of internal K+ ions into a vestibule binding site located approximately 13% into the membrane electric field measured from the internal surface. The minimal voltage dependence of external TEA block in Rb+ solutions results from a minimal occupancy of the vestibule site by Rb+ ions and because the energy profile of the selectivity filter favors a more inward distribution of Rb+ occupancy. 相似文献
4.
Ortega-Sáenz P Pardal R Castellano A López-Barneo J 《The Journal of general physiology》2000,116(2):181-190
Voltage-dependent K(+) channel gating is influenced by the permeating ions. Extracellular K(+) determines the occupation of sites in the channels where the cation interferes with the motion of the gates. When external [K(+)] decreases, some K(+) channels open too briefly to allow the conduction of measurable current. Given that extracellular K(+) is normally low, we have studied if negatively charged amino acids in the extracellular loops of Shaker K(+) channels contribute to increase the local [K(+)]. Surprisingly, neutralization of the charge of most acidic residues has minor effects on gating. However, a glutamate residue (E418) located at the external end of the membrane spanning segment S5 is absolutely required for keeping channels active at the normal external [K(+)]. E418 is conserved in all families of voltage-dependent K(+) channels. Although the channel mutant E418Q has kinetic properties resembling those produced by removal of K(+) from the pore, it seems that E418 is not simply concentrating cations near the channel mouth, but has a direct and critical role in gating. Our data suggest that E418 contributes to stabilize the S4 voltage sensor in the depolarized position, thus permitting maintenance of the channel open conformation. 相似文献
5.
Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes 总被引:2,自引:0,他引:2
The ATP-sensitive K(+) (K(ATP)) channels are known to provide a functional linkage between the electrical activity of the cell membrane and metabolism. Two types of inwardly rectifying K(+) channel subunits (i.e., Kir6.1 and Kir6.2) with which sulfonylurea receptors are associated were reported to constitute the K(ATP) channels. In this study, we provide evidence to show two types of K(ATP) channels with different biophysical properties functionally expressed in isolated rat ventricular myocytes. Using patch-clamp technique, we found that single-channel conductance for the different two types of K(ATP) channels in these cells was 57 and 21 pS. The kinetic properties, including mean open time and bursting kinetics, did not differ between these two types of K(ATP) channels. Diazoxide only activated the small-conductance K(ATP) channel, while pinacidil and dinitrophenol stimulated both channels. Both of these K(ATP) channels were sensitive to block by glibenclamide. Additionally, western blotting, immunochemistry, and RT-PCR revealed two types of Kir6.X channels, i.e., Kir6.1 and Kir6.2, in rat ventricular myocytes. Single-cell Ca(2+) imaging also revealed that similar to dinitrophenol, diazoxide reduced the concentration of intracellular Ca(2+). The present results suggest that these two types of K(ATP) channels may functionally be related to the activity of heart cells. 相似文献
6.
Katsumasa Kawahara 《The Journal of membrane biology》1985,88(3):283-292
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V
a
change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V
a
change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV
a
change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane. 相似文献
7.
The sensitivity of K(ATP) channels to high-affinity block by sulfonylureas and to stimulation by K(+) channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) profoundly antagonized ATP inhibition of K(ATP) channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. By stabilizing the open state of the channel, PIP(2) drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant K(ATP) channels (Kir6. 2[DeltaN30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an "uncoupled" phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6. 2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP(2) also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP(2) application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP(2). The net effect of increasing open state stability, either by PIP(2) or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-L-lysine. 相似文献
8.
9.
Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium 总被引:2,自引:0,他引:2
R. Abdel-Basset 《Acta Physiologiae Plantarum》1998,20(2):149-153
Vicia faba plants were grown under drought conditions and variously supplemented with calcium. Drought stress markedly inhibited the
growth of Vicia faba plants. Ca2+ ameliorated to a large extent this inhibition; fresh weight, dry mass, chlorophyll and water contents were variably improved.
Membranes were, also, negatively affected by drought stress and percentage leakage was elevated. Concomitantly, the efflux
of K+ and Ca2+ was enhanced by drought but lowered by supplemental Ca2+. In addition, membranes of droughted plants were sensitive to the Ca2+ channel blockers lanthanum, nifedipine or verapamil more than those of control plants. These blockers significantly increased
the efflux of K+ and Ca2+ as well as percentage leakage particularly in those of droughted plants. The above results indicated that the functioning
of the calcium channels was negatively affected when Vicia faba was grown under drought conditions. However, much of the drought-induced disorders including sensitivity towards the applied
calcium channel blockers could be ameliorated by supplemental Ca2+. 相似文献
10.
All K+-channels are stabilized by K+-ions in the selectivity filter. However, they differ from each other with regard to their selectivity filter. In this study, we changed specific residue Val-76 in the selectivity filter of KcsA to its counterpart Ile in inwardly rectifying K+-channels (Kir). The tetramer was exclusively converted into monomers as determined by conventional gel electrophoresis. However, by perfluoro-octanoic acid (PFO) gel electrophoresis mutant channel was mostly detected as tetramer. Tryptophan fluorescence and acrylamide quenching experiments demonstrated significant alteration in channel folding properties via increase in hydrophilicity of local environment. Furthermore, in planar lipid bilayer experiments V76I exhibited drastically lower conductance and decreased channel open time as compared to the unmodified KcsA. These studies suggest that V76I might contribute to determine the stabilizing, folding and channel gating properties in a selective K+-channel. 相似文献
11.
Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block
下载免费PDF全文

Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg(2+). Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenopus oocytes expressing Kir2.1, and single channel currents in the inside-out patches from COS7 cells transfected with Kir2.1. We found that as spermine concentration or voltage increased, the shallow voltage-dependent component of spermine block at more negative voltages was caused by progressive reduction in the single channel current amplitude, without a decrease in open probability. We attributed this effect to spermine screening negative surface charges involving E224 and E299 near the inner vestibule of the channel, thereby reducing K ion permeation rate. This idea was further supported by experiments in which increasing ionic strength also decreased Kir2.1 single channel amplitude, and by mutagenesis experiments showing that this component of spermine block decreased when E224 and E299, but not D172, were neutralized. The steep voltage-dependent component of block at more depolarized voltages was attributed to spermine migrating deeper into the pore and causing fast open channel block. A quantitative model incorporating both features showed excellent agreement with the steady-state and kinetic data. In addition, this model accounts for previously described substate behavior induced by a variety of Kir2.1 channel blockers. 相似文献
12.
Stephen M. Vogel 《Molecular and cellular biochemistry》1989,80(1-2):37-47
Techniques routinely utilized in this laboratory for recording currents through single ionic channels of isolated atrial and ventricular rat cardiomyocytes are described. Emphasis is placed in two main areas: first, on methods for obtaining a sufficient yield of Ca++-tolerant myocytes suitable for patch clamp experiments, and secondly, on methods for analyzing the temporal characteristics of patched ionic channels. These methods were used on acetylcholine activated K+ channels in isolated atrial myocytes and on an inwardly-rectifying K+ channel in ventricular myocytes. The latter is an example of a hormonally modulated K+ channel, since its activity could be substantially increased by norepinephrine. Analysis of the closed and open time distributions suggested that one of the closed states of this channel is markedly abbreviated by norepinephrine, whereas the open state is nearly unaffected. Norepinephrine was effective when channel activity was recorded from on-cell patches and the hormone was added to the solution bathing the cell membrane outside of the patched area. This indicates that a second messenger substance is probably mediating the action of norepinephrine. 相似文献
13.
Coexpression of the beta subunit (KV,Cabeta) with the alpha subunit of mammalian large conductance Ca2+- activated K+ (BK) channels greatly increases the apparent Ca2+ sensitivity of the channel. Using single-channel analysis to investigate the mechanism for this increase, we found that the beta subunit increased open probability (Po) by increasing burst duration 20-100-fold, while having little effect on the durations of the gaps (closed intervals) between bursts or on the numbers of detected open and closed states entered during gating. The effect of the beta subunit was not equivalent to raising intracellular Ca2+ in the absence of the beta subunit, suggesting that the beta subunit does not act by increasing all the Ca2+ binding rates proportionally. The beta subunit also inhibited transitions to subconductance levels. It is the retention of the BK channel in the bursting states by the beta subunit that increases the apparent Ca2+ sensitivity of the channel. In the presence of the beta subunit, each burst of openings is greatly amplified in duration through increases in both the numbers of openings per burst and in the mean open times. Native BK channels from cultured rat skeletal muscle were found to have bursting kinetics similar to channels expressed from alpha subunits alone. 相似文献
14.
László Virág Tetsushi Furukawa Masayasu Hiraoka 《Molecular and cellular biochemistry》1993,119(1-2):209-215
The inside-out configuration of the patch-clamp technique was used to study the effect of glibenclamide on the ATP-sensitive K+ channel current in isolated guinea-pig ventricular myocytes. The inhibitory effect of glibenclamide was tested in the bath solution containing two different concentrations of ATP (100 M and 200 M). It was found that the effect of the drug on the KATP current was stronger in the presence of the higher concentration of ATP. The blocking effect of glibenclamide on the channels was weaker if, in addition to ATP, ADP was applied in the intracellular solution. Similarly, the inhibitory effect of the drug was not pronounced for the channels reactivated by ADP after run-down. As application of the drug in the presence and absence of Mg2+ did not show different effects on the channel inhibition, we concluded that the effect of glibenclamide may not depend on the phosphorylation of the channel protein. These results suggest that in addition of the previously described effect of ADP, ATP also has some modulatory effect on inhibition of the KATP channel by glibenclamide. 相似文献
15.
Summary The effect of papaverine, an inhibitor of the phosphodiesterase responsible for breakdown of cAMP, on the transepithelial sodium transport across the isolated frog skin was investigated.Serosal addition of papaverine caused initially an increase in the short-circuit current (SCC), a doubling of the cellular cAMP content and a depolarization of the intracellular potential under SCC conditions (V
scc).The initial increase in the SCC was followed by a pronounced decrease both in the SCC and in the natriferic action of antidiuretic hormone (ADH), but papaverine had no inhibitory effect on the ability of ADH to increase the cellular cAMP content. As SCC declines, no hyperpolarization was observed.The I/V relationship across the apical membrane during the inhibitory phase, revealed that papaverine reduces the sodium permeability of the apical membrane (P
Na
a
)as well as intracellular sodium concentration. These observations and the previously noted effect of papaverine on V
scc indicates that papaverine must have an effect on the cellular Cl or K permeability.The basolateral Na,K,2Cl cotransporter was blocked with bumetanide, which should bring the cellular chloride in equilibrium. Bumetanide had no effect on basal SCC and V
scc. When papaverine was added to skins preincubated with bumetanide, the effect of papaverine on SCC and V
scc was unchanged. Therefore, the depolarization of V
scc, observed during the papaverine induced inhibition of the SCC, must be due to a reduction in the cellular K permeability.In conclusion, it is suggested that papaverine reduces the sodium permeability of the apical membrane and the potassium permeability of the basolateral membrane of the frog skin epithelium. 相似文献
16.
Frémont Valérie Blanc Eric Crest Marcel Martin-Eauclaire Marie-France Gola Maurice Darbon Hervé van Rietschoten Jurphaas 《International journal of peptide research and therapeutics》1997,4(4-6):305-312
Summary Ca2+-activated K+ channels consist of a large family of membrane proteins, among which two groups have been characterized by electrophysiological
criteria, the small conductance (SK) and the large conductance (BK) Ca2+-activated K+ channels. Scorpion toxins that block K+ channels exhibit a common three-dimensional structure constituted of a short α-helix connected by disulfide bonds to a β-sheet.
The leiurotoxin I (LTX1) related toxins interact specifically with the SK channel via basic residues of their α-helix, while
the charybdotoxin (ChTX) family recognizes the BK channel with basic residues of their β-sheet. In an attempt to better understand
the structure-activity relationships of these toxins and the characteristics of the electrostatic interactions with the receptor
site, we investigated the electrostatic potential supported by natural toxins and a synthetic analogue to find out if it may
help in understanding the molecular mechanisms involved in this peptide-protein interaction. 相似文献
17.
The COOH-terminal S9-S10 tail domain of large conductance Ca(2+)-activated K(+) (BK) channels is a major determinant of Ca(2+) sensitivity (Schreiber, M., A. Wei, A. Yuan, J. Gaut, M. Saito, and L. Salkoff. 1999. Nat. Neurosci. 2:416-421). To investigate whether the tail domain also modulates Ca(2+)-independent properties of BK channels, we explored the functional differences between the BK channel mSlo1 and another member of the Slo family, mSlo3 (Schreiber, M., A. Yuan, and L. Salkoff. 1998. J. Biol. Chem. 273:3509-3516). Compared with mSlo1 channels, mSlo3 channels showed little Ca(2+) sensitivity, and the mean open time, burst duration, gaps between bursts, and single-channel conductance of mSlo3 channels were only 32, 22, 41, and 37% of that for mSlo1 channels, respectively. To examine which channel properties arise from the tail domain, we coexpressed the core of mSlo1 with either the tail domain of mSlo1 or the tail domain of mSlo3 channels, and studied the single-channel currents. Replacing the mSlo1 tail with the mSlo3 tail resulted in the following: increased open probability in the absence of Ca(2+); reduced the Ca(2+) sensitivity greatly by allowing only partial activation by Ca(2+) and by reducing the Hill coefficient for Ca(2+) activation; decreased the voltage dependence approximately 28%; decreased the mean open time two- to threefold; decreased the mean burst duration three- to ninefold; decreased the single-channel conductance approximately 14%; decreased the K(d) for block by TEA(i) approximately 30%; did not change the minimal numbers of three to four open and five to seven closed states entered during gating; and did not change the major features of the dependency between adjacent interval durations. These observations support a modular construction of the BK channel in which the tail domain modulates the gating kinetics and conductance properties of the voltage-dependent core domain, in addition to determining most of the high affinity Ca(2+) sensitivity. 相似文献
18.
Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini 总被引:2,自引:0,他引:2
Both beta1 and beta2 auxiliary subunits of the BK-type K(+) channel family profoundly regulate the apparent Ca(2)+ sensitivity of BK-type Ca(2)+-activated K(+) channels. Each produces a pronounced leftward shift in the voltage of half-activation (V(0.5)) at a given Ca(2)+ concentration, particularly at Ca(2)+ above 1 microM. In contrast, the rapidly inactivating beta3b auxiliary produces a leftward shift in activation at Ca(2)+ below 1 microM. In the companion work (Lingle, C.J., X.-H. Zeng, J.-P. Ding, and X.-M. Xia. 2001. J. Gen. Physiol. 117:583-605, this issue), we have shown that some of the apparent beta3b-mediated shift in activation at low Ca(2)+ arises from rapid unblocking of inactivated channels, unlike the actions of the beta1 and beta2 subunits. Here, we compare effects of the beta3b subunit that arise from inactivation, per se, versus those that may arise from other functional effects of the subunit. In particular, we examine gating properties of the beta3b subunit and compare it to beta3b constructs lacking either the NH(2)- or COOH terminus or both. The results demonstrate that, although the NH(2) terminus appears to be the primary determinant of the beta3b-mediated shift in V(0.5) at low Ca(2)+, removal of the NH(2) terminus reveals two other interesting aspects of the action of the beta3b subunit. First, the conductance-voltage curves for activation of channels containing the beta3b subunit are best described by a double Boltzmann shape, which is proposed to arise from two independent voltage-dependent activation steps. Second, the presence of the beta3b subunit results in channels that exhibit an anomalous instantaneous outward current rectification that is correlated with a voltage dependence in the time-averaged single-channel current. The two effects appear to be unrelated, but indicative of the variety of ways that interactions between beta and alpha subunits can affect BK channel function. The COOH terminus of the beta3b subunit produces no discernible functional effects. 相似文献
19.
20.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process. 相似文献