首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular DNA in bacteria is localized into nucleoids enclosed by cytoplasm. The forces which cause condensation of the DNA into nucleoids are poorly understood. We suggest that direct and indirect macromolecular crowding forces from the surrounding cytoplasm are critical factors for nucleoid condensation, and that within a bacterial cell these crowding forces are always present at such high levels that the DNA is maintained in a condensed state. The DNA affected includes not only the preexisting genomic DNA but also DNA that is newly introduced by viral infection, replication or other means.  相似文献   

2.
Macromolecules occupy between 34% and 44% of the cell cytoplasm, about half the maximum packing density of spheres in three dimension. Yet, there is no clear understanding of what is special about this value. To address this fundamental question we investigate the effect of macromolecular crowding on cell metabolism. We develop a cell scale flux balance model capturing the main features of cell metabolism at different nutrient uptakes and macromolecular densities. Using this model we show there are two metabolic regimes at low and high nutrient uptakes. The latter regime is characterized by an optimal cytoplasmatic density where the increase of reaction rates by confinement and the decrease by diffusion slow-down balance. More important, the predicted optimal density is in the range of the experimentally determined density of Escherichia coli.  相似文献   

3.
We review recent evidence illustrating the fundamental difference between cytoplasmic and test tube biochemical kinetics and thermodynamics, and showing the breakdown of the law of mass action and power-law approximation in in vivo conditions. Simulations of biochemical reactions in non-homogeneous media show that as a result of anomalous diffusion and mixing of the biochemical species, reactions follow a fractal-like kinetics. Consequently, the conventional equations for biochemical pathways fail to describe the reactions in in vivo conditions. We present a modification to fractal-like kinetics following the Zipf–Mandelbrot distribution which will enable the modelling and analysis of biochemical reactions occurring in crowded intracellular environments.  相似文献   

4.
5.
The effects of crowding agents, polyethylene glycol (PEG 20K), Dextran 70, and bovine serum albumin, on the denaturation of homotetrameric D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in 0.5 M guanidine hydrochloride and the reactivation of the fully denatured enzyme have been examined quantitatively. Increasing the concentration of PEG 20K to 225 mg/ml decreases the rate constant of slow phase of GAPDH inactivation to 5% but with no change for the fast phase. Chaperone GroEL assists GAPDH refolding greatly and shows even higher efficiency under crowding condition. Crowding mainly affects refolding steps after the formation of the dimeric folding intermediate.  相似文献   

6.
Electron cryotomography has unique potential for three-dimensional visualization of macromolecular complexes at work in their natural environment. This approach is based on reconstructing three-dimensional volumes from tilt series of electron micrographs of cells preserved in their native states by vitrification. Resolutions of 5–8 nm have already been achieved and the prospects for further improvement are good. Since many intracellular activities are conducted by complexes in the megadalton range with dimensions of 20–50 nm, current resolutions should suffice to identify many of them in tomograms. However, residual noise and the dense packing of cellular constituents hamper interpretation. Recently, tomographic data have been collected on vitrified eukaryotic cells (Medalia et al., Science (2002) in press). Their cytoplasm was found to be markedly less crowded than in the prokaryotes previously studied, in accord with differences in crowding between prokaryotic and eukaryotic cells documented by other (indirect) biophysical methods. The implications of this observation are twofold. First, complexes should be more easily identifiable in tomograms of eukaryotic cytoplasm. This applies both to recognizing known complexes and characterizing novel complexes. An example of the latter—a 5-fold symmetric particle is—given. Second, electron cryotomography offers an incisive probe to examine crowding in different cellular compartments.  相似文献   

7.
Proteins fold and function inside cells which are environments very different from that of dilute buffer solutions most often used in traditional experiments. The crowded milieu results in excluded-volume effects, increased bulk viscosity and amplified chances for inter-molecular interactions. These environmental factors have not been accounted for in most mechanistic studies of protein folding executed during the last decades. The question thus arises as to how these effects—present when polypeptides normally fold in vivo—modulate protein biophysics. To address excluded volume effects, we use synthetic macromolecular crowding agents, which take up significant volume but do not interact with proteins, in combination with strategically selected proteins and a range of equilibrium and time-resolved biophysical (spectroscopic and computational) methods. In this review, we describe key observations on macromolecular crowding effects on protein stability, folding and structure drawn from combined in vitro and in silico studies. As expected based on Minton’s early predictions, many proteins (apoflavodoxin, VlsE, cytochrome c, and S16) became more thermodynamically stable (magnitude depends inversely on protein stability in buffer) and, unexpectedly, for apoflavodoxin and VlsE, the folded states changed both secondary structure content and, for VlsE, overall shape in the presence of macromolecular crowding. For apoflavodoxin and cytochrome c, which have complex kinetic folding mechanisms, excluded volume effects made the folding energy landscapes smoother (i.e., less misfolding and/or kinetic heterogeneity) than in buffer.  相似文献   

8.
Many and possibly all macromolecules in the nucleus are segregated into discrete compartments, but the current model that this is achieved by a fibrillar nuclear matrix which structures the nuclear interior and compartments is not consistent with all experimental observations, as reviewed here. New results are presented which suggest that macromolecular crowding forces play a crucial role in the assembly of at least two compartments, nucleoli and PML bodies, and an in vitro system in which crowding assembles macromolecular complexes into structures which resemble nuclear compartments is described. Crowding forces, which are strong in the nucleus due to the high macromolecule concentration (in the range of 100 mg/ml), vastly increase the association constants of intermolecular interactions and can segregate different macromolecules into discrete phases. The model that they play a role in compartmentalisation of the nucleus is generally consistent with the properties of compartments, including their spherical or quasispherical form and their dynamic and mobile nature.  相似文献   

9.
Guigas G  Kalla C  Weiss M 《FEBS letters》2007,581(26):5094-5098
Macromolecular crowding provides the cytoplasm and the nucleoplasm with strongly viscoelastic properties and renders the diffusion of soluble proteins in both fluids anomalous. Here, we have determined the nanoscale viscoelasticity of the cytoplasm and the nucleoplasm in different mammalian cell lines. In contrast to the cell-specific response on the macroscale the nanoscale viscoelasticity (i.e. the behavior on length scales about 100-fold smaller than the cell size) only showed minor variations between different cell types. Similarly, the associated anomalous diffusion properties varied only slightly. Our results indicate a conserved state of macromolecular crowding in both compartments for a variety of mammalian cells with the cytoplasm being somewhat more crowded than the nucleus.  相似文献   

10.
Molecular crowding effects on structure and stability of DNA   总被引:2,自引:1,他引:1  
Miyoshi D  Sugimoto N 《Biochimie》2008,90(7):1040-1051
Living cells contain a variety of biomolecules including nucleic acids, proteins, polysaccharides, and metabolites as well as other soluble and insoluble components. These biomolecules occupy a significant fraction (20-40%) of the cellular volume. The total concentration of biomolecules reaches 400gL(-1), leading to a crowded intracellular environment referred to as molecular crowding. Therefore, an understanding of the effects of molecular crowding conditions on biomolecules is important to broad research fields such as biochemical, medical, and pharmaceutical sciences. In this review, we describe molecular conditions in the cytoplasm and nucleus, which are totally different from in vitro conditions, and then show the biochemical and biophysical consequences of molecular crowding. Finally, we discuss the effect of molecular crowding on the structure, stability, and function of nucleic acids and the significance of molecular crowding in biotechnology and nanotechnology.  相似文献   

11.
Recent experimental studies of protein folding and binding under crowded solutions suggest that crowding agents exert subtle influences on the thermodynamic and kinetic properties of the proteins. While some of the crowding effects can be understood qualitatively from simple models of the proteins, quantitative rationalization of these effects requires an atomistic representation of the protein molecules in modeling their interactions with crowders. A computational approach, known as postprocessing, has opened the door for atomistic modeling of crowding effects. This review summarizes the applications of the postprocessing approach for studying crowding effects on the thermodynamics and kinetics of protein folding, conformational transition, and binding. The integration of atomistic modeling with experiments in crowded solutions promises new insight into biochemical processes in cellular environments.  相似文献   

12.
Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome.  相似文献   

13.
Based on the ground state of counterions condensed on a DNA molecule, a model has been developed to successfully detect the process of DNA condensation. Through further investigation, the process of DNA condensation strongly depends on the correlation distance between condensed counterions on DNA molecules. Generally, there are two routes. The process of DNA condensation with the correlation distance between condensed counterions being 2 nm or 4 nm is different from the one with the correlation distance between condensed counterions being 3 nm or 5 nm. Effects of ionic strength on the diameter of toroidal condensates originate from the increase of correlation distance between condensed counterions.  相似文献   

14.
15.
A likely function of the Lambda FI gene product (gpFI) is condensation of developmental forms of the bacteriophage DNA in the host cell. Several characteristics of gpFI support this hypothesis: it is similar in its structure and properties toE. coli NS proteins whose involvement in the bacterial DNA condensation has been established and it comigrates with DNA during fractionation of host cell lysate through a sucrose gradient.  相似文献   

16.
I.G. Tremmel  E. Weis 《BBA》2007,1767(5):353-361
The diffusion of plastoquinol and its binding to the Qo site of the cyt bf complex in the course of photosynthetic electron transport was studied by following the sigmoidal flash-induced re-reduction kinetics of P700 after previous oxidation of the intersystem electron carriers. The data resulting from these experiments were matched with a simulation of electron transport using Monte Carlo techniques. The simulation was able to account for the experimental observations. Two different extreme cases of reaction mechanism at the Qo site were compared: a diffusion limited collisional mechanism and a non-diffusion limited tight binding mechanism. Assuming a tight binding mechanism led to best matches due to the high protein density in thylakoids. The varied parameters resulted in values well within the range of published data. The results emphasise the importance of structural characteristics of thylakoids in models of electron transport.  相似文献   

17.
Physiological media constitutes a crowded environment that serves as the field of action for protein-protein interaction in vivo. Measuring protein-protein interaction in crowded solutions can mimic this environment. In this work we follow the process of protein-protein association and its rate constants (k(on)) of the beta-lactamase (TEM)-beta-lactamase inhibitor protein (BLIP) complex in crowded solution using both low and high molecular mass crowding agents. In all crowded solutions (0-40% (w/w) of ethylene glycol (EG), poly(ethylene glycol) (PEG) 200, 1000, 3350, 8000 Da Ficoll-70 and Haemaccel the measured absolute k(on), but not k(off) values, were found to be slower as compared to buffer. However, there is a fundamental difference between low and high mass crowding agents. In the presence of low mass crowding agents and Haemaccel k(on) depends inversely on the solution viscosity. In high mass polymer solutions k(on) changes only slightly, even at viscosities 12-fold higher than water. The border between low and high molecular mass polymers is sharp and is dictated by the ratio between the polymer length (L) and its persistence length (Lp). Polymers that are long enough to form a flexible coil (L/Lp > 2) behave as high molecular mass polymers and those who are unable to do so (L/Lp < 2) behave as low molecular mass polymers. We concluded that although polymers solution are crowded, this property is not uniform; i.e. there are areas in the solution that contain bulk water, and in these areas proteins can diffuse and associate almost as if they were in diluted environment. This porous medium may be taken as mimicking some aspects of the cellular environment, where many of the macromolecules are organized along membranes and the cytoskeleton. To determine the contribution of electrostatic attraction between proteins in crowded milieu, we followed k(on) of wt-TEM and three BLIP analogs with up to 100-fold increased values of k(on) due to electrostatic steering. Faster associating BLIP variants keep their relative advantage in all crowded solutions, including Haemaccel. This result suggests that faster associating protein complexes keep their advantage also in complex environment.  相似文献   

18.
The general theory of sedimentation equilibrium (SE), applicable to mixtures of interacting sedimentable solutes at arbitrary concentration, is summarized. Practical techniques for the acquisition of SE data suitable for analysis are described. Experimental measurements and analyses of SE in concentrated protein solutions are reviewed. The method of non-ideal tracer sedimentation equilibrium (NITSE) is described. Experimental studies using NITSE to detect and quantitatively characterize intermolecular interactions in mixtures of dilute tracer species and concentrated proteins or polymers are reviewed.  相似文献   

19.
Exchange of counterions in DNA condensation   总被引:1,自引:0,他引:1  
Murayama Y  Sano M 《Biopolymers》2005,77(6):354-360
We measured the fluorescence intensity of DNA-bound fluorescent dyes YO-PRO-1 (oxazole yellow) and YOYO-1 (dimer of oxazole yellow) at various spermidine concentrations to determine how counterions on DNA are exchanged in the process of DNA condensation. A decrease of fluorescence intensity was observed with an increase of spermidine. Considering the chemical equilibrium under the competition between the dye and spermidine for counterion condensation on DNA, the theoretical curve well describes the decrease of the fluorescence intensity. These results indicate that dyes are exchanged for spermidine at the binding site on DNA; that is, the exchange of counterions occurs. The parameters associated with the decrease of the fluorescence intensity show that the relative affinity of the dye and spermidine for DNA depends on the state of DNA. Moreover, YOYO-1 prevents the DNA condensation, but the effect of YO-PRO-1 on the condensation is very slight, though both dyes intercalate for DNA; the high affinity of YOYO-1 compared to YO-PRO-1 enables prevention of the condensation.  相似文献   

20.
We report a high cooperative transition from the semi-flexible to the flexible regime of polymer elasticity during the interaction of the DNA molecule with the chemotherapeutic drug Mitoxantrone (MTX). By using single molecule force spectroscopy, we show that the force-extension curves of the DNA-MTX complexes deviate from the typical worm-like chain behavior as the MTX concentration in the sample increases, becoming straight lines for sufficiently high drug concentrations. The behavior of the radius of gyration of the complexes as a function of the bound MTX concentration was used to quantitatively investigate the cooperativity of the condensation process. The present methodology can be promptly applied to other ligands that condense the DNA molecule upon binding, opening new possibilities in the investigation of this type of process and, more generally, in the investigation of phase transitions in polymer physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号