首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
膜-生物硝化反应器处理含氨废水效能的研究   总被引:1,自引:0,他引:1  
武小鹰  郑平  胡宝兰   《生物工程学报》2005,21(2):279-283
研究了膜 生物硝化反应器对含氨废水的处理效能以及分离膜的截留和渗透效能。膜_生物反应器启动迅速 ,在水力停留时间为 1d的情况下 ,反应器最高进水浓度达 80mmol(NH4+-N)·L-1 ,最高容积负荷达 1 12kg(NH4+ -N)·m-3·d-1 ,氨氮去除率保持在 95%以上。试验证明 ,分离膜对微生物有良好的截留作用 ,50天内反应器的污泥浓度从 5g·L-1 增长到 10g·L-1 ,分离膜表面附着的生物层则对废水氨氮和亚硝氮有进一步的转化作用。在液位差低于 80cm时 ,提高液位差可增大膜渗透通量 ;液位差超过 80cm后 ,增大液位差的膜渗透通量效应很小 ;其中 ,当液位差为 2 0cm左右时 ,膜通量达 2 . 5 1L·m-2 ·h-1 ,阻力最小 [(2 . 6 3× 10-5)m-1]。该膜_生物硝化反应器可依靠液位差压力驱动出水 ,无需外加动力。  相似文献   

2.
膜生物反应器的研究进展   总被引:2,自引:0,他引:2  
膜生物反应器是近年来发展的废水处理新技术,具有活性污泥浓度高、污泥龄长、占地面积小、投资省的特点。利用膜生物反应器进行污水处理不仅可以大大节约水资源,还可以大大节约能源,节省设备和运行费用,已成为二十一世纪研究热点。膜生物反应器是通过高效膜分离技术与活性污泥相结合,增大污泥中的特效菌来加快生化反应速率,提高废水处理效果。目前处理对象已从生活污水扩展到高浓度的有机废水和难降解的工业废水。本文综述了膜生物反应器在废水中的应用研究情况,并分析比较了各种膜材质的特点、适用范围以及膜的污染因素和清洗方法,展望了膜生物反应器的应用前景及进一步研究方向。  相似文献   

3.
活性污泥法随着技术的成熟,已应用在高氨氮污水/废水处理中,通过不断发展衍生出的很多新型工艺也成为研究热点,短程硝化反应作为代表已逐渐体现出优越性。短程硝化能达到高效净化污水的目的,其反应中的代谢产物羟胺也和微生物类群及反应产物之间有着至关重要的影响。反应器中活性污泥的微生物群落结构和动态密切相关,探究微生物群落结构能帮助生物强化、优化参数,提高脱氮效率。本文主要总结了近年来有关短程硝化/半短程硝化活性污泥微生物群落组成与结构及其与反应器处理效率之间的关系,以及羟胺代谢对短程硝化的影响等方面的研究进展,这些研究加深了对微生物群落结构和污水处理工艺之间的认识,但充分发掘生物信息、提高工艺效能之路仍然充满挑战,还需利用氮平衡方法、Real-time PCR法等多种生物技术手段对短程硝化进行全方位研究,为实践提供坚实的理论基础。  相似文献   

4.
限氧自养硝化-反硝化生物脱氮新技术   总被引:10,自引:0,他引:10  
张丹  徐慧  李相力  张颖  陈冠雄 《应用生态学报》2003,14(12):2333-2336
限氧自养硝化—反硝化是部分硝化与厌氧氨氧化相耦联的生物脱氮反应过程,通过严格控制溶解氧在0.1~0.3mg·L^-1,实现硝化反应控制在亚硝酸阶段,然后以硝化阶段剩余的NH4^+作为电子供体,在厌氧条件下实现反硝化,该反应过程是完全的自养硝化—反硝化过程,具有能耗低、脱氮效率高、反应系统占地面积小等优点,适用于处理COD/NH4^+—N低的废水,是一种非常有应用前景的生物脱氮技术,文中详细介绍了限氧自养硝化—反硝化生物脱氮反应过程的研究进展,讨论了其微生物学机理及应用前景。  相似文献   

5.
关于好氧反硝化菌筛选方法的研究   总被引:30,自引:0,他引:30  
采用污泥驯化手段富集好氧反硝化细菌,将得到的驯化污泥分离纯化,共得到105株菌。用测TN的方法对所筛菌株进行初筛,得到25株对TN去除率达到50%以上的菌株。用氮元素轨迹跟踪测定法复筛,证实这25株菌都可以在好氧条件下进行硝酸盐呼吸,其中24株菌的反硝化过程为:NO3^-N→NO2^-N→N2,研究中还发现在反硝化过程中硝酸盐和亚硝酸盐不存在明显竞争被利用的作用。同时还提出了可能实现短程同步硝化反硝化以及在反馈作用的调节下,加快硝化反应速度的观点。  相似文献   

6.
膜生物反应器中的生物学特征   总被引:15,自引:1,他引:15  
由于在膜生物反应器内膜的截留作用 ,使膜生物反应器内的一些生物学特征与传统的活性污泥过程有所不同。本文系统地阐述了膜生物反应器内的微生物群落、活性污泥及微生物产物的生理生化特征。  相似文献   

7.
邱并生 《微生物学通报》2010,37(11):1712-1712
<正>养殖水体氮素污染问题是目前困扰我国水产养殖业可持续发展的一大难题。生物脱氮技术被认为是目前最具发展前景的水体脱氮技术,其效果的优劣与所采用菌株的特性密切相关。传统反硝化细菌仅能在厌氧及低氧条件下发挥脱氮作用,与养殖水体的高溶氧环境矛盾,而好氧反硝化细菌则可在高溶氧环境中发挥脱氮作用,显著提高生物脱氮技术在养殖水体中的应用效果,实现养殖水体的绿色、零污染脱氮。因而,对好氧反硝化细菌开展高效选育方法的研究,找到可适应养殖水体水环境的微生物菌株具有重要的理论价值和经济价值。  相似文献   

8.
好氧反硝化生物脱氮技术的研究进展   总被引:3,自引:1,他引:3  
好氧反硝化生物脱氮技术自提出以来,凭借能实现同步硝化反硝化、节省基建投资及运行费用等诸多优点,受到国内外环境领域学者的广泛关注。本文首先总结了近年来好氧反硝化菌种的筛选分离情况,以及环境因子对好氧反硝化菌脱氮效能的影响,包括溶解氧(dissolved oxygen,DO)、碳氮比(C/N)、温度等。然后深入探讨了好氧反硝化生物脱氮技术的原理,好氧反硝化过程中的关键功能基因及酶,同时介绍了分子生物技术在好氧反硝化研究过程中的应用,以及好氧反硝化生物脱氮技术在实际应用方面的研究现状。最后,基于目前的研究瓶颈问题,对未来好氧反硝化生物脱氮技术的研究方向提出了科学展望。  相似文献   

9.
454高通量焦磷酸测序法鉴定膜生物反应器膜污染优势菌种   总被引:10,自引:0,他引:10  
【目的】对诱发膜-生物反应器(Membrane bioreactors,MBR)膜污染的优势菌种进行研究。【方法】利用454高通量焦磷酸测序法对MBR污泥混合液样品与膜污染物样品中微生物信息进行统计,并对两组样品的Chao丰度指数与Shannon生物多样性指数计算,对测序结果进行系统发育学分析。【结果】从污泥混合液样品与膜污染物样品中获得9 353与7 504条优化序列,发现膜污染物中微生物丰度与多样性均高于污泥混合样品。借助基因频谱对OTU分布特点进行统计,表明源于污泥混合液中的微生物在膜表面定殖生长过程中发生了种群变化,在膜面污染物样品中,β-变形菌纲丰度显著降低,α-变形菌纲、γ-变形菌纲与Phycisphaerae在微生物种群结构中比重增加。【结论】454焦磷酸测序分析表明,黄色单胞菌(Xanthomonadaceae),嗜热厌氧杆菌(Thermoanaerobacter),Phycisphaera以及2株尚未培养出的细菌(Candidate_division_TM7及Candidate_division_OD1)是诱发MBR膜污染的优势菌种(微生物丰度1%)。诱发膜污染的细菌既包括了黏性高、表面疏水的种类(如γ-变形菌),从而引发细菌在膜表面的定殖,也包括了代谢能力强的物种(如Candidate_division_OD1)可以确保种间递氢顺畅。  相似文献   

10.
从富集的活性污泥菌群中,筛选得到反硝化菌株FDN-1。通过对菌株形态观察、生理生化鉴定以及16SrDNA序列分析,确定该菌株为黄杆菌属(Havobacterium mizutaii)。以N02---N为氮源、甲醇为碳源进行驯化,亚硝酸盐氮浓度在200-400mg/L范围时,总氮去除率均在90%以上;脱氮能力验证结果表明,该菌株能够处理含亚硝酸盐的污水,进水亚硝酸盐氮浓度不能超过600mg/L。  相似文献   

11.
This study evaluated the effect of sludge age on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. A membrane bioreactor with no separate anoxic volume was operated at a sludge age of 20 days under low dissolved oxygen concentration of 0.1-0.2 mg/L. Its performance was compared with the period when the sludge age was adjusted to 60 days. Floc size distribution, apparent viscosity, and nitrogen removal differed significantly, together with different biomass concentrations: nitrification was reduced to 40% while denitrification was almost complete. Modelling indicated that both nitrification and denitrification kinetics varied as a function of the sludge age. Calibrated values of half saturation coefficients were reduced when the sludge age was lowered to 20 days. Model simulation confirmed the validity of variable process kinetics for nitrogen removal, specifically set by the selected sludge age.  相似文献   

12.
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated to minimize the effect of suspended solids on membrane fouling. The MBMBR and a conventional membrane bioreactor (CMBR) were operated in parallel for about two months. Unexpectedly, the rate of membrane fouling in MBMBR was about three times of that in CMBR. MBMBR showed a higher cake layer resistance than CMBR due to plenty of filamentous bacteria inhabited in suspended solids in MBMBR. Protein and polysaccharide contents of soluble EPS in MBMBR were obviously larger than those in CMBR. It could be speculated that the overgrowth of filamentous bacteria in MBMBR resulted in severe cake layer and induced a large quantity of EPS, which deteriorated the membrane fouling.  相似文献   

13.
14.
In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4–0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.  相似文献   

15.
A pilot-scale membrane bioreactor was used to treat urban wastewater using pure oxygen instead of air as a source of aeration, to study its influence on bacterial diversity and levels of enzyme activities (acid and alkaline phosphatases, glucosidase, protease, and esterase) in the sludge. The experimental work was developed in two stages influenced by seasonal temperature. Operational parameters (temperature, pH, BOD5, COD, total and volatile suspended solids) were daily monitored, and enzyme activities measured twice a week. Redundancy analysis (RDA) was used to reveal relationships between the level of enzyme activities and the variation of operational parameters, demonstrating a significant effect of temperature and volatile suspended solids. Bacterial diversity was analyzed by temperature-gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes. Significant differences in community structure were observed between both stages. Sequence analysis revealed that the prevalent Bacteria populations were evolutively close to Alphaproteobacteria (44%), Betaproteobacteria (25%) and Firmicutes (17%).  相似文献   

16.
A submerged membrane bioreactor (MBR) with a working volume of 1.4 L and a hollow fiber microfiltration membrane was used to treat a contaminated raw water supply at a short hydraulic retention time (HRT) of approximately 1 h. Filtration flux tests were conducted regularly on the membrane to determine various fouling resistances, and confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were employed to characterize the biofouling development and sludge cake formation on the membrane. The experimental results demonstrate that the MBR is highly effective in drinking water treatment for the removal of organic pollutants, ammonia, and UV absorbance. During the MBR operation, the fouling materials were not uniformly distributed on the entire surface of all of the membrane fibers. The membrane was covered partially by a static sludge cake that could not be removed by the shear force of aeration, and partially by a thin sludge film that was frequently washed away by aeration turbulence. The filtration resistance coefficients were 308.4 x 10(11) m(-1) on average for the sludge cake, 32.5 x 10(11) m(-1) on average for the dynamic sludge film, and increased from 10.5 x 10(11) to 59.7 x 10(11) m(-1) for the membrane pore fouling after 10 weeks of MBR operation at a filtration flux of 0.5 m3/m2 x d. Polysaccharides and other biopolymers were found to accumulate on the membrane, and hence decreased membrane permeability. More important, the adsorption of biopolymers on the membrane modified its surface property and led to easier biomass attachment and tighter sludge cake deposition, which resulted in a progressive sludge cake growth and serious membrane fouling. The sludge cake coverage on the membrane can be minimized by the separation, with adequate space, of the membrane filters, to which sufficient aeration turbulence can then be applied.  相似文献   

17.
Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.  相似文献   

18.
The experimental study has assessed a novel membrane bioreactor for mammalian cell culture. In the absence of a gas phase, the key features of cell damage associated with laminar and turbulent flow have been identified. The bioreactor employs a dimpled membrane in order to enhance transverse mixing in a narrow channel, but a fall in viable cell density has been observed at Reynolds numbers above Re = 83. In the laminar flow regime wall shear is the critical mechanism and an accurate calculation of shear rate in a complex channel has been achieved using the Reynolds analogy. Flow generating a wall shear rate in excess of 3000 s(-1) has been shown to cause damage. Power dissipation measurements have been used to distinguish between laminar and turbulent flow and also to predict Kolmogorov eddy lengths. An additional turbulent bulk stress damage mechanism at higher Reynolds numbers (Re > 250) results in a very rapid fall in viable cell density.  相似文献   

19.
《Process Biochemistry》2014,49(12):2241-2248
Membrane bioreactors (MBR) technology for wastewater offers many advantages over conventional technologies such as high effluent quality, less footprint and others. The main disadvantage of membrane bioreactors (MBR) is related to membrane fouling, which is mainly caused by extracellular polymeric substance (EPS) and soluble microbial products (SMP). This research studied EPS and SMP dynamics at different heights of a submerged anaerobic membrane bioreactor (SAMBR). The SAMBR was operated under two organic loading rates (OLR) (0.79 and 1.56 kg/m3 d) and was fed with synthetic wastewater with glucose as the carbon source. The results showed percentages of chemical oxygen demand (COD) removal above 95% and the highest COD removal rates were observed at the bottom of the reactor (>83%) for both OLR. The EPS showed a stratification with highest quantities in the supernatant. For the SMP the highest concentration was in the bottom of SAMBR where utilization predominated associated products whereas in the SAMBR supernatant predominated biomass associated products. The OLR change led to a significant increase in SMP accumulation but not in EPS. These facts showed that EPS and SMP dynamic in the SAMBR seemed to be mainly influenced by biological activity, total suspended solids concentration and substrate composition.  相似文献   

20.
The performance of a wastewater bench-scale ultrafiltration membrane bioreactor (MBR) treatment plant using pure oxygen to supply the aerobic conditions for 95 days was studied. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 12 h and a sludge retention time of 39.91 days. Aeration represents its major power input; this is why the alpha-factor of the aeration and kinetic parameters (design parameters) were determined when the mixed liquid suspended solids (MLSS) was increased from 3420 to 12,600 mg/l in order to understand the system. An alpha-factor in the range 0.462-0.022 and the kinetic parameters measured with the respirometric method (KM of 73.954-3.647 mg/l, kd of 0.0142-0.104 day−1, kH of 0.1266-0.655 day−1, and the yield mean coefficient of 0.941) were obtained. Our study suggested significant changes in the behaviour of the biological system when the concentration of MLSS was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号