首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary AMP deaminase, the activity that catalyzes the deamination of AMP to form IMP and NH3 has been measured in Dictyostelium discoideum. A new procedure to assay the activity of this enzyme was developed using formycin 5-monophosphate, a fluorescent analog of AMP as the substrate, and ionpaired reverse phase HPLC to separate the reactants and products. Quantitation of the formycin containing compounds was accomplished at 290 nm. At this wavelength adenosine containing compounds were not detected and activity could be monitored in the presence of its activator ATP. The AMP deaminase activity in vegetative cells was 7.4 nmols/min/mg proteins while the activity in cells measured at 2 and 6 hrs after starvation-induced growth-arrest was 376 nmols/min/mg protein... a 51-fold increase. When vegetative cells were treated with hadacidin, a drug that restricts de novo AMP synthesis and pinocytosis, the activity of the AMP deaminase was 511 nmols/min/mg protein... a 70-fold increase compared to that in untreated vegetative cells. Smaller increases were noted following the inhibition of growth with the drugs cerulenin and vinblastine, as well as after the inhibition of de novo GMP synthesis with the drug mycophenolic acid or the partial inhibition of de novo AMP synthesis with analogs of hadacidin, N-hydroxyglycine and N-formylglycine. In addition, when the activity of two other enzymes involved in purine metabolism, namely adenosine kinase and hypoxanthine-guanine phosphoribosyl transferase, was measured in vegetative cells, and the activity of both compared to that measured in starvation and hadacidin induced growth-arrested cells, showed no significant changes. These data suggest that the changes in the activity of the AMP deaminase are in response to nutrient deprivation and further, that as a consequence of the increase in AMP deaminase activity, ammonia will be produced and an increase in pH should follow. The production of ammonia and its effect on development implicates the AMP deaminase in the early differentiation of this organism.  相似文献   

2.
The activity of liver branched-chain 2-oxo acid dehydrogenase complex was measured in rats fed on low-protein diets and given adrenaline, glucagon, insulin or dibutyryl cyclic AMP in vivo. Administration of glucagon or adrenaline (200 micrograms/100 g body wt.) resulted in a 4-fold increase in the percentage of active complex. As with glucagon and adrenaline, treatment of rats with cyclic AMP (5 mg/100 g body wt.) resulted in marked activation of branched-chain 2-oxo acid dehydrogenase. Insulin administration (1 unit/100 g body wt.) also resulted in activation of enzyme; however, these effects were less than those observed with glucagon and adrenaline. In contrast with the results obtained with low-protein-fed rats, administration of adrenaline (200 micrograms/100 g body wt.) to rats fed with an adequate amount of protein resulted in only a modest (14%) increase in the activity of the complex. The extent to which these hormones activate branched-chain 2-oxo acid dehydrogenase appears to be correlated with their ability to stimulate amino acid uptake into liver.  相似文献   

3.
Adenyl nucleotide levels and activity of AMP catabolism enzymes in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis have been studied under different dietary protein regimens. It was found that in animals with toxic hepatitis maintained on a diet rich in protein the ATP and ADP levels decreased, while AMP levels were similar to those in control animals. At the same time, in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis kept under conditions of protein deficiency, ATP and AMP pools were depleted. Changes in the adenyl nucleotides content were accompanied by altered activity of AMP catabolism enzymes, such as 5′-nucleotidase and AMP deaminase. It was found that in rats with toxic hepatitis that were fed a complete diet, AMP deaminase activity increased in comparison to the control level along with 5′-nucleotidase stimulation. At the same time, in protein-restricted rats with toxic liver damage, AMP deaminase activity decreased, while 5′-nucleotidase activity was elevated in comparison to control values. These results indicate depletion of energy sources in the liver cells of rats with acetaminophen-induced hepatitis that were fed a low-protein diet. The observed changes in the activity of AMP catabolism enzymes may be considered as one of the mechanisms that regulate the cellular energy function.  相似文献   

4.
ACTH at levels as low as 0.05 mU/ml stimulated lipolysis, protein kinase and cyclic AMP accumulation in isolated fat cells from fed and fasted rats. Changes in cyclic AMP levels and in the protein kinase activity ratio were well correlated temporally. The protein kinase activity ratio was potentiated by adenosine deaminase. A sudden increase or decrease in either ACTH or dibutyryl cyclic AMP concentration was associated with a rapid and corresponding change in the rate of glycerol production. With ACTH, the changes in glycerol production were accompanied by appropriate changes in cyclic AMP levels. Actinomycin-D (10 UM) did not affect lipolysis or cyclic AMP accumulation activated by ACTH in fat cells.  相似文献   

5.
Key enzymes of the glyoxylate cycle (isocitrate lyase and malate synthetase) were found in the liver and kidney of rats suffering from alloxan diabetes. The activities of these enzymes in the liver were 0.080 and 0.0430 U/mg protein, respectively. Isocitrate lyase activity in the kidney was 0.030 U/mg protein, and that of the malate synthetase was 0.018 U/mg protein. Peroxisomal localization of the enzymes was shown. A novel malate dehydrogenase isoform was found in a liver of rats suffering from the alloxan diabetes. The isocitrate lyase was isolated by selective (NH4)2SO4 precipitation and DEAE-Toyopearl chromatography. The resulting enzyme preparation had specific activity 6.1 U/mg protein, corresponding to 76.25-fold purification with 32.6% yield. The isocitrate lyase was found to follow the Michaelis--Menten kinetic scheme (Km for isocitrate, 0.08 mM) and to be competitively inhibited by glucose 1-phosphate (Ki = 1. 25 mM), succinate (Ki = 1.75 mM), and citrate (Ki = 1.0 mM); the pH optimum of the enzyme was 7.5 in Tris-HCl buffer.  相似文献   

6.
We report nutritional physiology and non-specific immune responses of ascorbic acid (AA) in puffer fish for the first time. This study aimed to examine the essentiality and requirements of AA in diets for the tiger puffer, Takifugu rubripes based on growth performance, liver AA and bone collagen concentration, and non-specific immune responses. Five casein-gelatin based semi-purified diets were formulated to contain five graded levels of l-ascorbyl-2-monophosphate at 0, 40, 80, 160 and 700mg/kg (designated as AMP0, AMP40, AMP80, AMP160 and AMP700, respectively) and fed to triplicate groups of fish. After 10weeks of feeding trial, growth performances of fish (initial body weight, 35g) fed the AMP0 were significantly lower compared to that of fish fed diets supplemented with AMP. The fish fed the AMP0 diet also exhibited significantly lower hematocrit, condition factor and hepatosomatic index compared to the fish fed diets supplemented with AMP. Phagocytic activity (NBT assay) was significantly lower in fish fed the AMP0 diet than in fish fed the AMP containing diets. Plasma lysozyme activity of fish fed the AMP80 and AMP160 was significantly higher than that of fish fed the AMP0. Dietary supplementation of AMP significantly increased the liver superoxide dismutase in the fish. Myeloperoxidase activity of fish fed the AMP0 was significantly lower compared to that of fish fed the AMP containing diets. Bone collagen level tended to increase numerically and total AA concentration in liver of fish was significantly increased in a dose dependent manner by the supplementation of AMP. Therefore, tiger puffer requires exogenous ascorbic acid and the optimum dietary level could be 29mg AA/kg diet for normal growth and physiology. Dietary AA concentration over 82mg/kg could be required to enhance non-specific immune responses of the fish. However, it does not seem that the fish needs an overdose of dietary AA (>160mg/kg) for better non-specific immune responses.  相似文献   

7.
The insulin-like effects of vanadate were compared in streptozotocin-induced diabetic rats fed on high starch control and high sucrose diets for a period of six weeks. Diabetic rats in both diet groups were characterized by hypoinsulinemia, hyperglycemia (6.8–7.0 fold increase) and significant decreases (p<0.001) in the activities of glycogen synthase, phosphorylase and lipogenic enzymes, ATP-citrate lyase, glucose 6-phosphate dehydrogenase and malic enzyme in liver. There were no diet-dependent differences in these abnormalities. However, the insulin-mimetic agent vanadate was more effective in diabetic rats fed sucrose diet as compared to animals fed control starch diet. Vanadate administration resulted in 30% and 64% decreases in plasma glucose levels in diabetic rats fed control and sucrose diets, respectively. The activities of glycogen synthase (active) and phosphorylase (active and total) were restored significantly by vanadate in control (p<0.05–0.01) and sucrose (p<0.001) diets fed diabetic rats. This insulin-mimetic agent increased the activities of hepatic lipogenic enzymes in control diet fed rats to 38–47% of normal levels whereas in sucrose fed group it completely restored the activities. Sucrose diet caused a distinct effect on the plasma levels of triacylglycerol (4-fold increase) and apolipoprotein B (2.8-fold increase) in diabetic rats and vanadate supplementation decreased their levels by 65–75%. These data indicate that vanadate exerts insulin-like effects in diabetic rats more effectively in sucrose fed group than the animals fed control diet. In addition, vanadate also prevents sucrose-induced hypertriglyceridemia.  相似文献   

8.
Rats were fed diets containing 20, 50 and 80% protein for 14 months. The urea excreted by the rats fed diets containing 50 and 80% protein when compared to rats fed diets containing 20% protein increased ca. 2- and 3-fold, respectively, in ca. 2 days; this increase was maintained essentially unchanged through the experimental period. The serum levels of urea increased 2.5- and 4-fold, respectively, in the first days and were also maintained during the experiment. Glutamate dehydrogenase activity of liver remained unchanged. The five urea cycle enzymes increased with respect to the control values. Orotic acid excretion increased as well as orotidylate decarboxylase and orotate phosphoribosyltransferase, but aspartate transcarbamylase did not. The key amino acids involved in the urea and pyrimidine pathways in liver were also measured; aspartic and glutamic acids and citrulline were increased, and ornithine and arginine did not change with the higher protein intake. In general, no differences were observed between animals fed 50 and 80% protein in their diets. Protein synthesis did not increase with the increase of protein content of the diet. Stereological analysis of ultrathin sections showed that the high protein diet induced a significant increment in the volumetric density, numerical density and size of hepatocyte mitochondria. Moreover, the presence of giant mitochondria, a hundred times larger than normal, was also observed in some periportal hepatocytes of rats fed the 80% protein diet.  相似文献   

9.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

10.
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.  相似文献   

11.
Rat transferrin or asialotransferrin doubly radiolabelled with 59Fe and 125I was injected into rats. A determination of extrahepatic and hepatic uptake indicated that asialotransferrin delivers a higher fraction of the injected 59Fe to the liver than does transferrin. In order to determine in vivo the intrahepatic recognition sites for transferrin and asialotransferrin, the liver was subfractionated into parenchymal, endothelial and Kupffer cells by a low-temperature cell isolation procedure. High-affinity recognition of transferrin (competed for by an excess of unlabelled transferrin) is exerted by parenchymal cells as well as endothelial and Kupffer cells with a 10-fold higher association (expressed per mg of cell protein) to the latter cell types. In all three cell types iron delivery occurs, as concluded from the increase in cellular 59Fe/125I ratio at prolonged circulation times of transferrin. It can be calculated that parenchymal cells are responsible for 50-60% of the interaction of transferrin with the liver, 20-30% is associated with endothelial cells and about 20% with Kupffer cells. For asialotransferrin a higher fraction of the injected dose becomes associated with parenchymal cells as well as with endothelial and Kupffer cells. Competition experiments in vivo with various sugars indicated that the increased interaction of asialotransferrin with parenchymal cells is specifically inhibited by N-acetylgalactosamine whereas mannan specifically inhibits the increased interaction of asialotransferrin with endothelial and Kupffer cells. Recognition of asialotransferrin by galactose receptors from parenchymal cells or mannose receptors from endothelial and Kupffer cells is coupled to active 59Fe delivery to the cells. It is concluded that, as well as parenchymal cells, liver endothelial and Kupffer cells are also quantitatively important intrahepatic sites for transferrin and asialotransferrin metabolism, an interaction exerted by multiple recognition sites on the various cell types.  相似文献   

12.
A comparison was made of succinyladenylate lyase (SAMP lyase), total serum sialic (TSA), and lipid soluble serum sialic acid (LSA) as early markers of malignancy in three experimentally induced rat tumor models. Elevation of SAMP lyase in 3'-methyl-dimethylaminoazobenzene-induced hepatic tumors at 2 weeks corresponded with microscopic detection of preneoplastic lesions with elevation of LSA occurring 2 weeks later. Elevation of breast SAMP lyase concurred with macroscopic presence of dimethylbenzanthracene involved breast tumors with elevation of LSA occurring 12 weeks later. Neither colon SAMP lyase nor LSA increased in rats bearing colon tumors induced by dimethylhydrazine. The determination of TSA was not a reliable indicator of tumor presence for the three types of tumors investigated. Both SAMP lyase and LSA are very good early indicators of hepatic tumor with SAMP lyase an earlier indicator of breast tumor than LSA.  相似文献   

13.
Basal activity and hormonal responsiveness of the adenylate cyclase-adenosine 3′,5′-monophosphate system were examined in premalignant liver from rat chronically fed the hepatic carcinogen DL-ethionine, and these data were correlated with endogenous levels of plasma glucagon. By 2 weeks basal hepatic cyclic AMP levels, determined in tissue quick-frozen in situ, were 2-fold higher in rats ingesting ethionine than in the pair-fed control. Enhanced tissue cyclic AMP content was associated with an increase in the adenylate cyclase activity of whole homogenates of fresh liver from rats fed ethionine (68 ± 5 pmol cyclic AMP/10 min per mg protein) compared to control (48 ± 4). Cyclic AMP-dependent protein kinase activity ratios were also significantly higher (control, 0.38 ± 0.04; ethionine 0.55 ± 0.05) and the percent glycogen synthetase activity in the glucose 6-phosphate-independent form was markedly reduced (control, 52 ± 7%; ethionine, 15 ± 1.5 %) in the livers of ethionine-fed rats compared to the controls, suggesting that the high total hepatic cyclic AMP which accompanied ethione ingestion was biologically effective. These changes persisted throughout the 38 weeks of drug ingestion. Immunoreactive glucagon levels, determined in portal venous plasma, were 8-fold higher than control after 2 weeks of the ethionine diet (contro, 185 ± 24 pg/ml; ethionine, 1532 ± 195). Analogous to the changes in hepatic parameters, plasma glucagon levels remained elevated during the entire period of drug ingestion until the development of hepatomas. The hepatic cyclic AMP response to a maximal stimulatory dose of injected glucagon was blunted in vivo in ethionine-fed rats (control, 14-fold increase over basal, to 8.63 ± 1.1 pmol/mg wet weight; ethionine, 4.6-fold rise over basal, to 5.42 ± 0.9). Reduced cyclic AMP responses to both maximal and submaximal glucagon stimulation were also evident in vitro in hepatic slices prepared from rats fed the drug, and the reduction was specific to glucagon. Absolute or relative hepatic cyclic AMP responses to maximally effective concentrations of prostaglandin E1 or isoproterenol in hepatic slices from ethionine-fed rats were greater than or equal to those observed in control slices. Parallel alterations in hormonal responsiveness were observed in adenylate cyclase activity of whole homogenates of these livers, implying that the changes in cyclic AMP accumulation following hormone stimulation were related to an alteration in cyclic AMP generation in the premalignant tissue.In view of the recognized hepatic actions of glucagon and the desensitization of adenylate cyclase which can occur during sustained stimulation of the liver with this hormone, the endogenous hyperglucagonemia that accompanies ethionine ingestion could play a role in the pathogenesis of both the basal alterations in hepatic cyclic AMP metabolism and the reduced responsiveness to glucagon observed in liver from rats fed this carcinogen.  相似文献   

14.
Basal activity and hormonal responsiveness of the adenylate cyclase-adenosine 3',5'-monophosphate system were examined in premalignant liver from rats chronically fed the hepatic carcinogen DL-ethionine, and these data were correlated with endogenous levels of plasma glucagon. By 2 weeks basal hepatic cyclic AMP levels, determined in tissues quick-frozen in situ, were 2-fold higher in rats ingesting ethionine than in the pair-fed control. Enhanced tissue cyclic AM content was associated with an increase in the adenylate cyclase activity of whole homogenates of fresh liver from rats fed ethionine (68 +/- 5 pmol cyclic AMP/10 min per mg protein) compared to control (48 +/- 4). Cyclic AMP-dependent protein kinase activity ratios were also significantly higher (control, 0.38 +/- 0.04; ethionine 0.55 +/- 0.05) and the percent glycogen synthetase activity in the glucose 6-phosphate-independent form was markedly reduced (control, 52 +/- 7%; ethionine, 15 +/- 1.5%) in the livers of ethionine-fed rats compared to the controls, suggesting that the high total hepatic cyclic AMP which accompanied ethionine ingestion was bilogically effective. These changes persisted throughout the 38 weeks of drug ingestion. Immunoreactive glucagon levels, determined in portal venous plasma, were 8-fold higher than control after 2 weeks of the ethionine diet (control, 185 +/- 24 pg/ml; ethionine, 1532 +/- 195). Analogous to the changes in hepatic parameters, plasma glucagon levels remained elevated during the entire period of drug ingestion until the development of hepatomas. The hepatic cyclic AMP response to a maximal stimulatory dose of injected glucagon was blunted in vivo in ethionine-fed rats (control, 14 -fold increase over basal, to 8.63 +/- 1.1 pmol/mg wet weight; ethionine, 4.6-fold rise over basal, to 5.42 +/- 0.9). Reduced cyclic AMP responses to both maximal and submaximal glucagon stimulation were also evident in vitro in hepatic slices prepared from rats fed the drug, and the reduction was specific to glucagon. Absolute or relative hepatic cyclic AMP responses to maximally effective concentrations of protaglandin E1 or isoproterenol in hepatic slices from ethionine-fed rats were greater than or equal to those observed in control slices. Parallel alterations in hormonal responsiveness were observed in adenylate cyclase activity of whole homogenates of these livers, implying that the changes in cyclic AMP accumulation following hormone stimulation were related to an alteration in cyclic AMP generation in the premalignant tissue. In view of the recognized hepatic actions of glucagon and the desensitization of adenylate cyclase which can occur during sustained stimulation of the liver with this hormone, the endogenous hyperglucagonemia that accompanies ethionine ingestion could play a role in the pathogenesis of both the basal alterations in hepatic cyclic AMP metabolism and the reduced responsiveness to glucagon observed in liver from rats fed this carcinogen.  相似文献   

15.
When a single injection of 500 I.U. of human chorionic gonadotropin (hCG) is given to rats there is an initial acute rise of plasma testosterone and of testicular content for both cyclic AMP and testosterone. This response correlates with an increase in both lyase and 17 alpha-hydroxylase activities. Thereafter both plasma and testicular testosterone decline and do not increase after a second injection of hCG. During this period of desensitization, isolated Leydig cells were insensitive to the steroidogenic stimulatory effect of both hCG and dibutyryl cyclic AMP. The post-cyclic AMP block is not due to an alteration of the cyclic AMP-dependent protein kinase but it is correlated with a decrease in both lyase and 17 alpha-hydroxylase activities of the Leydig cell's microsomes. This decrease is not caused by the absence of the recently described cytosol activator of this enzyme because its addition did not restore the enzymatic activity. Within 60 to 96 h after hCG injection there was a spontaneous increase of both plasma and testicular testosterone and this parallels the recovery of lyase and 17 alpha-hydroxylase activities. These results suggest that both enzymatic activities are regulated, directly or indirectly, by hCG, and that this is partly responsible for the hCG-induced steroidogenic refractoriness of Leydig cells.  相似文献   

16.
Young male rats were fed regular lab chow, or a diet containing 66% of total calories as either glucose or fructose. Both experimental diets led to hypertriglyceridemia, with fasting TG concentrations after one week of 195 +/- 20 and 296 +/- 44 mg/dl for rats fed glucose and fructose, respectively, compared to 94 +/- 10 mg/dl in the control rats. Moderate changes in VLDL composition were observed with both test diets, characterized by slight increases in TG: protein ratio, and increased total cholesterol and phospholipid content. In addition, VLDL isolated from rats fed high carbohydrate diets were increased in size, with a mean VLDL particle diameter of 666 A and 720 A in glucose-fed and fructose-fed rats, as compared to 536 A in control rats. The changes in lipid composition and size of VLDL particles isolated from glucose and fructose-fed donor rats were associated with an increase in their rate of removal from the circulation following their injection into normal recipient rats (half-life time 2.4 +/- 0.2 and 3.2 +/- 0.3 min respectively) as compared to VLDL-TG derived from chow fed donors (4.1 +/- 0.2 min). These data indicate that diets high in either glucose or fructose can lead to both structural and functional changes in VLDL, and provide additional evidence that the ability of fructose to induce profound hypertriglyceridemia is not secondary to a defect in VLDL-TG catabolism.  相似文献   

17.
Deoxycoformycin-resistant rat hepatoma cells exhibit up to a 2000-fold increase in adenosine deaminase activity compared to the sensitive parental cells. The increased enzyme activity in these cells is accompanied by similar increases in 1) the amount of adenosine deaminase protein, 2) the relative rate of adenosine deaminase synthesis in vivo, and 3) adenosine deaminase mRNA activity. To further investigate the mechanism(s) responsible for the overproduction of adenosine deaminase in these cells, we have isolated a recombinant plasmid containing a 1.4-kilobase insert complementary to at least part of the adenosine deaminase mRNA. Using this cDNA as a specific hybridization probe, all deoxycoformycin-resistant variants were shown to have increased amounts of adenosine deaminase mRNA and gene sequences. The relative increase in the level of mRNA and gene copy number was similar to the relative increase in enzyme activity for most resistant cell lines. However, the degree of adenosine deaminase gene amplification in one deoxycoformycin-resistant cell line (6-10-200) was 3-4-fold less than the relative increase in adenosine deaminase mRNA. These results indicate that the increased adenosine deaminase activity in deoxycoformycin-resistant rat hepatoma cells is due in large part, but not exclusively, to gene amplification.  相似文献   

18.
The methylotrophic yeast Candida boidinii S2 was found to be able to grow on pectin or polygalacturonate as a carbon source. When cells were grown on 1% (wt/vol) pectin, C. boidinii exhibited induced levels of the pectin-depolymerizing enzymes pectin methylesterase (208 mU/mg of protein), pectin lyase (673 mU/mg), pectate lyase (673 mU/mg), and polygalacturonase (3.45 U/mg) and two methanol-metabolizing peroxisomal enzymes, alcohol oxidase (0.26 U/mg) and dihydroxyacetone synthase (94 mU/mg). The numbers of peroxisomes also increased ca. two- to threefold in cells grown on these pectic compounds (3.34 and 2.76 peroxisomes/cell for cells grown on pectin and polygalacturonate, respectively) compared to the numbers in cells grown on glucose (1.29 peroxisomes/cell). The cell density obtained with pectin increased as the degree of methyl esterification of pectic compounds increased, and it decreased in strains from which genes encoding alcohol oxidase and dihydroxyacetone synthase were deleted and in a peroxisome assembly mutant. Our study showed that methanol metabolism and peroxisome assembly play important roles in the degradation of pectin, especially in the utilization of its methyl ester moieties.  相似文献   

19.
L-Ornithine decarboxylase activity is higher in enterocytes from rats fed low protein rather than high protein diets. Intestinal cell proliferation rate is 50% higher in rats fed high protein than low protein diets. This is not consistent with a direct role of ornithine decarboxylase in intestinal proliferation. It is shown that ornithine decarboxylase is preferentially associated with differentiating villus cells in intestine from rats fed low protein diets.  相似文献   

20.
Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号