首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since Bulgarians have never been investigated concerning the relationship between handedness and dermatoglyphics, the present study was aimed to investigate the aforementioned relationship in a Bulgarian sample. Digital dermatoglyphics and their asymmetries have been studied in 870 apparently healthy students from randomly selected Bulgarian secondary schools: 264 right-handers (RH), 246 mixed-handers (MH) and 360 left-handers (LH). The whorls were significantly less frequent and the ulnar loops more frequent in RH than in the other two handedness categories. Right-handers exceeded significantly MH and LH in the ulnar fluctuating asymmetries of the first and the fourth finger pairs. As compared to the number of investigated variables and especially to the important psychological and behavioral differences between handedness categories reported earlier in the same sample, the presented significant findings are rather scarce. Nevertheless they could contribute to the accumulation of data concerning the investigated relationship and to its better understanding.  相似文献   

2.
Biological asymmetries are important elements of the structure and function of many living organisms. Using the Plio-Pleistocene fossil record of crab predation on morphologically similar pairs of right- and left-handed snail species, we show here for the first time, contrary to traditional wisdom, that rare left-handed coiling promotes survival from attacks by right-handed crabs. This frequency-dependent result influences the balance of selection processes that maintain left-handedness at the species level and parallels some social interactions in human cultures, such as sports that involve dual contests between opponents of opposite handedness.  相似文献   

3.
The hypothesis that functional adaptation of joint surfaces to mechanical loading occurs primarily through change in mass, density, and structure of subarticular trabeculae (the "articular constraint" model) is investigated through an analysis of directional asymmetry among three separate bone compartments in the human second metacarpal. Measures of midshaft cross-sectional geometry, osteometry of the distal epiphysis, and subarticular trabecular microarchitecture of the distal epiphysis (assessed by high-resolution microcomputed tomography) were determined for 29 paired male and female metacarpals from a well-preserved nineteenth-century Euro-Canadian historic cemetery sample. For each measure, asymmetry was quantified using both mean-difference and confidence-interval methods. Both methods found a significant right-hand bias for measures of structural strength in midshaft geometry, as has been previously noted for this sample. Articular size, however, exhibits a right-hand bias only with regard to mediolateral, and not dorsopalmar, dimensions, a result that may reflect directional asymmetry in hand breadth at the distal palmar arch. The most striking asymmetries occur for subarticular trabecular microarchitecture. The right metacarpal head exhibits greater bone volume fraction, bone surface density, trabecular number, connectivity, and a more platelike rather than rodlike structure. These outcomes confer greater resistance to both axial compressive and shear strains for the metacarpal head at the metacarpophalangeal arthrosis. In all, these results confirm and extend previous research documenting structural asymmetries and limb dominance and are consistent with the concept of articular constraint. They also suggest a morphological signal through which functional asymmetry associated with handedness in fossil hominins may be investigated.  相似文献   

4.
Several investigators have questioned the significance of handedness as an explanation of directional forelimb asymmetries, yet little has been done to isolate other explanatory factors. In this investigation, we analyze 61 female and 76 male rhesus macaque skeletons for evidence of age- and/or sex-associated variations in ten forelimb bone measurements. All significant directional asymmetries are found to favor the right side. Although some of these asymmetries are found to favor the right side. Although some of these asymmetries are compatible with the interpretation of muscle hypertrophy associated with preferential use of the right forelimb, the overall pattern suggests that age- and sex-related ontogenetic factors deserve equal consideration. Significant sex differences in asymmetry means are present within and across age groups (juveniles, subadults, and adults), and numerous changes in asymmetry with age are also found. A pattern of decreasing asymmetry with age was found in males, with 40% of the ten measures being asymmetrical in juveniles, 30% in subadults, and 20% in adults. Among females, this pattern is reversed. No significant asymmetries were found for juvenile or subadult females, whereas 40% of the measures were asymmetrical in adult females. We conclude that greater consideration of age- and sex-related factors is necessary when drawing samples for the purpose of investigating asymmetries, and an awareness of trait-specific age and sex patterns of variation is necessary when citing forelimb asymmetries in demographically nonrepresentative populations as evidence of handedness or other behavioral asymmetries.  相似文献   

5.
In this study, we examined hemispheric differences in corticospinal excitability and in transcallosal inhibition in a selected group of young adults (n = 34) grouped into three handedness categories (RH: strongly right-handed, n = 17; LH: strongly left-handed, n = 10; MH: mixed-handed, n = 7) based on laterality quotients (LQ) derived from the Edinburgh Handedness Inventory. Performance measures were also used to derive a laterality index reflecting right-left asymmetries in manual dexterity (Dextli) and in finger tapping speed (Speedli). Corticospinal excitability was assessed in each hemisphere by means of transcranial magnetic stimulation (TMS) using the first dorsal interosseus as the target muscle. TMS measures consisted of resting motor threshold (rMT), motor evoked potential (MEP) recruitment curve (RC) and the contralateral silent period (cSP) with the accompanying MEP facilitation. Hemispheric interactions were assessed by means of the ipsilateral silent period (iSP) to determine the onset latency and the duration of transcallosal inhibition (i.e., LTI and DTI). Analysis of hemispheric variations in measures of corticospinal excitability revealed no major asymmetries in relation to degrees of laterality or handedness, with the exception of a rightward increase in rMTs in the LH group. Similarly, no clear asymmetries were found when looking at hemispheric variations in measures of transcallosal inhibition. However, a large group effect was detected for LTI measures, which were found to be significantly shorter in the MH group than in either the LH or RH group. MH participants also tended to show longer DTI than the other participants. Further inspection of overall variations in LTI and DTI measures as a function of LQs revealed that both variables followed a non-linear relationship, which was best described by a 2nd order polynomial function. Overall, these findings provide converging evidence for a link between mixed-handedness and more efficient interhemispheric communication when compared to either right- or left-handedness.  相似文献   

6.
SUMMARY Mutations or environmental factors that result in reversal of conspicuous left–right asymmetries provide an opportunity to study developmental mechanisms. They may also provide insight into evolutionary changes in asymmetry states within and between species. King crabs (family Lithodidae) have a larger right claw and females typically exhibit a dextrally offset abdomen. Nevertheless, I observed a high incidence of left handedness in laboratory reared box crabs ( Lopholithodes foraminatus ) and captured the first known egg-bearing female lithodid to exhibit reversed asymmetry. This provided a unique opportunity to characterize the reversed phenotype and to compare the incidence of reversed asymmetry in the offspring of normal and reversed females. Asymmetry of the chelae became apparent in the first postzoeal stage (glaucothoe) and handedness was maintained through subsequent instars. Females with larger left claws developed reversed abdominal asymmetry by the fourth crab stage. No reversed asymmetry was observed in the mandibles of zoea larvae or juveniles of either handedness. The incidence of reversed asymmetry in glaucothoe reared from one reversed and three normal females was high (between 20% and 30%), and independent of maternity ( P =0.67). Removal of the right cheliped of fourth stage zoeae, and the major cheliped of glaucothoe, did not reverse the direction of asymmetry. Elevated larval rearing temperature also did not affect the frequency of reversed individuals. This lack of evidence for either heritability or induction of handedness is enigmatic. Further investigation of reversed asymmetry in lithodid crabs may provide valuable insights into the development and evolution of bilateral asymmetries.  相似文献   

7.
Morphological cerebral asymmetries in chimpanzee brains, similar to those found in humans, in whom they are associated with speech and handedness, suggest the possibility of functional lateralization in the chimpanzee. This possibility was investigated by examining hand preferences in an island group of five chimpanzees on a series of unimanual and bimanual tasks that are diagnostic of human hand and cerebral dominance. Each subject was tested in a double compartment cage on three unimanual nonsequential, three unimanual sequential, and three bimanual coordination tasks. One of the three unimanual sequential tasks was a bar-press task that is analogous to the commonly used human finger-tapping task. For the unimanual tasks, exclusive of the bar-press, the chimpanzees showed a highly individualistic pattern of hand preference that did not change as a function of task complexity. On the bar-press task, four of five subjects produced higher rates with one hand compared to the other; however, relative hand performance on this task was unrelated to hand preference on the other unimanual tasks. For the group of subjects, performance rates did not differ between the left and right hands; however, a practice effect was observed for the right hand in all subjects. The bimanual tasks also revealed a complex pattern of individual handedness, with no trends apparent for the group as a whole. Consistent with previous findings, the results from these tests on this group of five chimpanzees suggest that cerebral morphological asymmetries in the chimpanzee are not associated with motor dominance as reflected in handedness.  相似文献   

8.
C. elegans embryos, larvae, and adults exhibit several left-right asymmetries with an invariant dextral handedness, which first becomes evident in the embryo at the 6-cell stage. Reversed (sinistral) handedness was not observed among > 10,000 N2 adults reared at 16°C or 20°C under standard conditions. However, among the progeny of adults reproducing at 10°C, the frequency of animals with sinistral handedness was increased to ∼0.5%. Cold pulse experiments indicated that the critical period for this increase was in early oogenesis, several hours before the first appearance of left-right asymmetry in the embryo. Hermaphrodites reared at 10°C and mated with males reared at 20°C produced sinistral outcross as well as sinistral self-progeny, indicating that the low temperature effect on oocytes was sufficient to cause reversals. Increased frequency of reversal was also observed among animals developed from embryos lacking the egg shell. Possible mechanisms for the control of embryonic handedness are discussed in the context of these results, including the hypothesis that handedness could be dictated by the chirality of a gametic component. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Anatomical asymmetries of the human brain are a topic of major interest because of their link with handedness and cognitive functions. Their emergence and occurrence have been extensively explored in human fossil records to document the evolution of brain capacities and behaviour. We quantified for the first time antero-posterior endocranial shape asymmetries in large samples of great apes, modern humans and fossil hominins through analysis of "virtual" 3D models of skull and endocranial cavity and we statistically test for departures from symmetry. Once based on continuous variables, we show that the analysis of these brain asymmetries gives original results that build upon previous analysis based on discrete traits. In particular, it emerges that the degree of petalial asymmetries differs between great apes and hominins without modification of their pattern. We indeed demonstrate the presence of shape asymmetries in great apes, with a pattern similar to modern humans but with a lower variation and a lower degree of fluctuating asymmetry. More importantly, variations in the position of the frontal and occipital poles on the right and left hemispheres would be expected to show some degree of antisymmetry when population distribution is considered, but the observed pattern of variation among the samples is related to fluctuating asymmetry for most of the components of the petalias. Moreover, the presence of a common pattern of significant directional asymmetry for two components of the petalias in hominids implicates that the observed traits were probably inherited from the last common ancestor of extant African great apes and Homo sapiens.These results also have important implications for the possible relationships between endocranial shape asymmetries and functional capacities in hominins. It emphasizes the uncoupling between lateralized activities, some of them well probably distinctive to Homo, and large-scale cerebral lateralization itself, which is not unique to Homo.  相似文献   

10.
Though right-handedness is a prominant characteristic within all human societies, a substantial and stable proportion of individuals are left-handed. Any comprehensive approach to the origin of variation in handedness must account for substantial evidence that left-handedness is associated with reduced fitness, neurodevelopmental disorders, and reduced neuroanatomical asymmetry. In this paper we investigate the hypothesis that developmental instability in early fetal development underlies variation in handedness. In two studies we note an increased incidence of minor physical anomalies (MPAs) and fluctuating asymmetries in both left-handers and extreme right-handers. Moreover, extreme right-handers were more apt to have left-handed parents than moderate right-handers. These data suggest that deviation from moderate right-handedness reflect imprecise expression of a near-universal design due to developmental instability. Preliminary attempts to elucidate the mechanisms underlying developmental instability suggest that both polygenic homozygosity and particular HLA alleles may be important factors. These observations are discussed with respect to current genetic theories of handedness and human evolution.  相似文献   

11.

Background

Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.

Methodology/Principal Findings

We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.

Conclusions/Significance

These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference.  相似文献   

12.
Anatomical asymmetries of the human brain are a topic of major interest because of their link with handedness and cognitive functions. Their emergence and occurrence have been extensively explored in human fossil records to document the evolution of brain capacities and behaviour. We quantified for the first time antero-posterior endocranial shape asymmetries in large samples of great apes, modern humans and fossil hominins through analysis of “virtual” 3D models of skull and endocranial cavity and we statistically test for departures from symmetry. Once based on continuous variables, we show that the analysis of these brain asymmetries gives original results that build upon previous analysis based on discrete traits. In particular, it emerges that the degree of petalial asymmetries differs between great apes and hominins without modification of their pattern. We indeed demonstrate the presence of shape asymmetries in great apes, with a pattern similar to modern humans but with a lower variation and a lower degree of fluctuating asymmetry. More importantly, variations in the position of the frontal and occipital poles on the right and left hemispheres would be expected to show some degree of antisymmetry when population distribution is considered, but the observed pattern of variation among the samples is related to fluctuating asymmetry for most of the components of the petalias. Moreover, the presence of a common pattern of significant directional asymmetry for two components of the petalias in hominids implicates that the observed traits were probably inherited from the last common ancestor of extant African great apes and Homo sapiens.These results also have important implications for the possible relationships between endocranial shape asymmetries and functional capacities in hominins. It emphasizes the uncoupling between lateralized activities, some of them well probably distinctive to Homo, and large-scale cerebral lateralization itself, which is not unique to Homo.  相似文献   

13.
Complex animals display bilaterally asymmetric motor behavior, or “motor handedness,” often revealed by preferential use of limbs on one side. For example, use of right limbs is dominant in a strong majority of humans. While the mechanisms that establish bilateral asymmetry in motor function are unknown in humans, they appear to be distinct from those for other handedness asymmetries, including bilateral visceral organ asymmetry, brain laterality, and ocular dominance. We report here that a simple, genetically homogeneous animal comprised of only ∼1000 somatic cells, the nematode C. elegans, also shows a distinct motor handedness preference: on a population basis, males show a pronounced right-hand turning bias during mating. The handedness bias persists through much of adult lifespan, suggesting that, as in more complex animals, it is an intrinsic trait of each individual, which can differ from the population mean. Our observations imply that the laterality of motor handedness preference in C. elegans is driven by epigenetic factors rather than by genetic variation. The preference for right-hand turns is also seen in animals with mirror-reversed anatomical handedness and is not attributable to stochastic asymmetric loss of male sensory rays that occurs by programmed cell death. As with C. elegans, we also observed a substantial handedness bias, though not necessarily the same preference in direction, in several gonochoristic Caenorhabditis species. These findings indicate that the independence of bilaterally asymmetric motor dominance from overall anatomical asymmetry, and a population-level tendency away from ambidexterity, occur even in simple invertebrates, suggesting that these may be common features of bilaterian metazoans.  相似文献   

14.
15.
Only a few authors examined several lateral asymmetries in families simultaneously. Seven lateralities (handedness, footedness, eyedness, earedness, hand clasping, arm folding and leg crossing) were examined in a sample of 292 biologically related parent-offspring triads and 36 sibling pairs. Analysis of the family data showed a significant association between parents and children in most lateralities. The frequency of left-sidedness increased with the number of left-sided parents. Only in the case of footedness and hand clasping there are no significant correlations. Additionally we investigated the inter-relationship between the lateralities in the parental generation. There is a relative strong relation especially among the functional asymmetries. The study analysed also the genetic association (linkage) according to McManus & Mascie-Taylor (1979) between seven different lateralized characteristics. It is shown that the lateral asymmetries correlate genetically relatively imperfectly with each other comparing the inter-relationship between the lateralities in the parental generation. This implicates a multigenetical and also multifactorial determination of laterality in human being.  相似文献   

16.
Vertebrate development gives rise to systematic, normally reliably coordinated left-right asymmetries of body structure. This “handed asymmetry” of anatomy must take its ultimate origin from some chiral molecular assembly (one exhibiting no planes of symmetry and thus, having an intrinsic “handedness”) within the early embryo's cells. But which molecules are involved, how is their chiral property coordinately aligned among many cells, and how does it “seed” the differential cascades of gene expression that characterise right and left halves of the embryo? Recent molecular characterisations of mouse mutations that randomise or reverse body asymmetries have offered tantalising clues to the chiral initiator molecules, but the findings in a subsequent Cell paper (Nonaka S, Yosuke T, Okada Y, Takeda S, Harada K, Kanai Y, Kido M, Hirokawa N. Randomisation of left-right asymmetry due to loss of nodal cilia generating a leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95:829–837. [Reference 1]) may help us understand how the first gene expression asymmetries occur. BioEssays 21:537–541, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

17.
Grooming is a complex set of motor actions, common in highly social primates. We tested for asymmetries in hand use during unimanual and bimanual allogrooming in 215 captive chimpanzees. In addition to hand use, we coded in the ethogram whether the manual grooming action co-occurred with the use of the mouth. Overall, grooming did not elicit strong handedness at the individual level, but there is a small yet significant population-level right-hand bias for bimanual grooming. Mouth use during grooming had no influence on hand use. A comparison of the findings with previously published data on handedness for grooming in wild chimpanzees suggests that wild apes are more right-handed than captive individuals are for allogrooming. Collectively, the results suggest that role differentiation of the hands is an important factor in the assessment of handedness for grooming, and perhaps additional manual actions of chimpanzees and other primates.  相似文献   

18.
Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans.  相似文献   

19.
Until the last decade or so, relatively little was known of cranial asymmetries in nonhuman primates. Data are slowly, but surely, accumulating for such features as transverse sinus flow, sylvian point angle differences, external brain morphology, etc. Cranial asymmetries are being analyzed and related to such diverse problems as “handedness” and phylogenetic systematics. It has been known for over 200 years that cranial asymmetry exists in some of the cerebral blood flow patterns in man, particularly the internal jugular pathway. Although earlier anatomists assumed this was only characteristic of “higher primates” (meaning man and the great apes), little quantitative data have been available to either support or deny this belief. There is a particular dearth of information for New World primates. The aim of this study is to contribute to the growing literature on cerebral asymmetries by partially filling in this gap in our knowledge of New World primate biology.  相似文献   

20.

Background  

Left hemispheric dominance of language processing and handedness, previously thought to be unique to humans, is currently under debate. To gain an insight into the origin of lateralization in primates, we have studied gray mouse lemurs, suggested to represent the most ancestral primate condition. We explored potential functional asymmetries on the behavioral level by applying a combined handedness and auditory perception task. For testing handedness, we used a forced food-grasping task. For testing auditory perception, we adapted the head turn paradigm, originally established for exploring hemispheric specializations in conspecific sound processing in Old World monkeys, and exposed 38 subjects to control sounds and conspecific communication sounds of positive and negative emotional valence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号