首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that 1 h after infusion of CD20 mAb rituximab in patients with chronic lymphocytic leukemia (CLL), >80% of CD20 was removed from circulating B cells, and we replicated this finding, based on in vitro models. This reaction occurs via an endocytic process called shaving/trogocytosis, mediated by FcγR on acceptor cells including monocytes/macrophages, which remove and internalize rituximab-CD20 immune complexes from B cells. Beers et al. reported that CD20 mAb-induced antigenic modulation occurs as a result of internalization of B cell-bound mAb-CD20 complexes by the B cells themselves, with internalization of ~40% observed after 2 h at 37°C. These findings raise fundamental questions regarding the relative importance of shaving versus internalization in promoting CD20 loss and have substantial implications for the design of mAb-based cancer therapies. Therefore, we performed direct comparisons, based on flow cytometry, to determine the relative rates and extent of shaving versus internalization. B cells, from cell lines, from patients with CLL, and from normal donors, were opsonized with CD20 mAbs rituximab or ofatumumab and incubated for varying times and then reacted with acceptor THP-1 monocytes to promote shaving. We find that shaving induces considerably greater loss of CD20 and bound mAb from opsonized B cells in much shorter time periods (75-90% in <45 min) than is observed for internalization. Both shaving/trogocytosis and internalization could contribute to CD20 loss when CLL patients receive rituximab therapy, but shaving should occur more rapidly and is most likely to be the key mechanism of CD20 loss.  相似文献   

2.
Treatment of chronic lymphocytic leukemia patients with anti-CD20 mAb rituximab (RTX) leads to substantial CD20 loss on circulating malignant B cells soon after completion of the RTX infusion. This CD20 loss, which we term shaving, can compromise the therapeutic efficacy of RTX, and in vitro models reveal that shaving is mediated by effector cells which express Fc gammaRI. THP-1 monocytes and PBMC promote shaving, but PBMC also kill antibody-opsonized cells by antibody-dependent cellular cytotoxicity (ADCC), a reaction generally considered to be due to NK cells. We hypothesized that within PBMC, monocytes and NK cells would have substantially different and competing activities with respect ADCC or shaving, thereby either enhancing or inhibiting the therapeutic action of RTX. We measured ADCC and RTX removal from RTX-opsonized Daudi cells promoted by PBMC, or mediated by NK cells and monocytes. NK cells take up RTX and CD20 from RTX-opsonized B cells, and mediate ADCC. PBMC depleted of NK cells show little ADCC activity, whereas PBMC depleted of monocytes have greater ADCC than the PBMC. Pre-treatment of RTX-opsonized B cells with THP-1 cells or monocytes suppresses NK cell-mediated ADCC, and blockade of Fc gammaRI on monocytes or THP-1 cells abrogates their ability to suppress ADCC. Our results indicate NK cells are the principal cells in PBMC that kill RTX-opsonized B cells, and that monocytes can suppress ADCC by promoting shaving. These results suggest that RTX-based immunotherapy of cancer may be enhanced based on paradigms which include infusion of compatible NK cells and inhibition of monocyte shaving activity.  相似文献   

3.
Complement plays an important role in the immunotherapeutic action of the anti-CD20 mAb rituximab, and therefore we investigated whether complement might be the limiting factor in rituximab therapy. Our in vitro studies indicate that at high cell densities, binding of rituximab to human CD20(+) cells leads to loss of complement activity and consumption of component C2. Infusion of rituximab in chronic lymphocytic leukemia patients also depletes complement; sera of treated patients have reduced capacity to C3b opsonize and kill CD20(+) cells unless supplemented with normal serum or component C2. Initiation of rituximab infusion in chronic lymphocytic leukemia patients leads to rapid clearance of CD20(+) cells. However, substantial numbers of B cells, with significantly reduced levels of CD20, return to the bloodstream immediately after rituximab infusion. In addition, a mAb specific for the Fc region of rituximab does not bind to these recirculating cells, suggesting that the rituximab-opsonized cells were temporarily sequestered by the mononuclear phagocytic system, and then released back into the circulation after the rituximab-CD20 complexes were removed by phagocytic cells. Western blots provide additional evidence for this escape mechanism that appears to occur as a consequence of CD20 loss. Treatment paradigms to prevent this escape, such as use of engineered or alternative anti-CD20 mAbs, may allow for more effective immunotherapy of chronic lymphocytic leukemia.  相似文献   

4.
Infusion of standard-dose rituximab (RTX) in chronic lymphocytic leukemia (CLL) patients promotes rapid complement activation and deposition of C3 fragments on CLL B cells. However, immediately after RTX infusions, there is substantial loss (shaving) of CD20 from circulating malignant cells. Because shaving can compromise efficacies of anticancer immunotherapeutic mAbs, we investigated whether shaving occurs in SCID mouse models. Z138 cells, a B cell line derived from human mantle cell lymphoma, were infused i.v. or s.c. The i.v. model recapitulates findings we previously reported for therapeutic RTX in CLL: i.v. infused RTX rapidly binds to Z138 cells in lungs, and binding is accompanied by deposition of C3 fragments. However, within 1 h targeted cells lose bound RTX and CD20, and these shaved cells are still demonstrable 40 h after RTX infusion. Z138 cells grow in tumors at s.c. injection sites, and infusion of large amounts of RTX (0.50 mg on each of 4 days) leads to considerable loss of CD20 from these cells. Human i.v. Ig blocked shaving, suggesting that FcgammaRI on cells of the mononuclear phagocytic system promote shaving. Examination of frozen tumor sections from treated mice by immunofluorescence revealed large areas of B cells devoid of CD20, with CD20 intact in adjacent areas; it is likely that RTX had opsonized Z138 cells closest to capillaries, and these cells were shaved by monocyte/macrophages. The shaving reaction occurs in neoplastic B cells in tissue and in peripheral blood, and strategies to enhance therapeutic targeting and block shaving are under development.  相似文献   

5.
Redistribution, or modulation, of some cell surface antigens occurs in the presence of specific antibody. The phenomenon of antigenic modulation may therefore affect the use of antibodies as therapeutic agents. This study was undertaken to investigate modulation of the 65,000 dalton T65 antigen, present on normal and malignant T cells and some malignant B cells, which is recognized by the monoclonal antibody T101. To induce cell surface antigenic modulation, normal or leukemic lymphoid cells were cultured in the presence of monoclonal antibody T101 for 3-hr periods. Removal of monocytes from mononuclear cell preparations resulted in significantly lower degrees of T65 antigenic modulation. The degree of antigenic modulation could be increased by adding monocytes back to monocyte-depleted lymphocyte suspensions. Furthermore, maximal modulation occurred in the presence of monocytes at T101 concentrations that were 3 logs lower than in the absence of monocytes. The enhancing effect of monocytes was dependent on the Fc portion of the T101 antibody molecule, and presumably was mediated by cross-linking of antigen-antibody complexes on the surface membrane of the modulating cell by Fc receptors present on monocytes. Further experiments performed to examine the characteristics of this enhancement of antigenic modulation by monocytes indicated that autologous as well as allogeneic monocytes were effective, indicating that the enhancing phenomenon was not dependent upon recognition of major histocompatibility antigens. Viable monocytes were required, but pretreatment of monocytes with sodium azide to inhibit energy production, or indomethacin to inhibit prostaglandin synthesis had no effect on this phenomenon. Polymorphonuclear leukocytes did not mediate similar enhancement, although monocytic and myeloid cell lines U937, THP-1, and HL-60 did. Spent culture medium from modulated cultures and preparations containing IL 1 activity did not enhance modulation of the T65 surface antigen on lymphocytes, suggesting that direct contact between lymphocytes and monocytes is required to mediate the effect. The finding that leukemic cells from patients with CLL undergo modulation of the T65 antigen to a much lower degree in vitro than observed in vivo, and that this difference can be overcome by the addition of monocytes, suggests that monocytes or the reticuloendothelial system may augment antigenic modulation in vivo.  相似文献   

6.

Background

The sensitivity of human Burkitt''s lymphoma cells to rituximab (Rtx) and tositumomab (Tst) was assessed on cells expressing different levels of CD20 on surface. Cells that harbor low CD20 levels may resists against therapeutics response to CD20-specific antibodies. We postulated that, radiation-induced modulation of CD20 surface levels may play a crucial and central role in determining the relative efficacy of rituximab and tositumomab in treating Burkitt''s lymphoma disease. Here, we examined the γ-radiation-induced CD20 expression in the Burkitt lymphoma cell line ‘Daudi’ and the relation of differential levels of CD20 with anti-CD20 mAbs mediated cell death.

Methodology

In this study we examined kinetics of CD20 expression following sub lethal doses ofγ-radiation to Daudi cells and thereafter anti-CD20 mAbs (rituximab and tositumomab) were added in cell suspensions. The correlation of kinetics of CD20 expression and cells treated with anti-CD20 mAbs/or corresponding isotype Abs with special reference to changes in mitochondrial membrane potential and reactive oxygen species generation was also examined. Further, we also investigated the efficacy of anti-CD20 mAbs and possible induction of cell death in relation to levels of CD20 cell surface expression.

Conclusion

This report provides evidence that CD20 expression can be induced by exposure of cells to γ-radiation. In addition, these findings demonstrated that the efficacy of anti-CD20 mAbs is dependent on the surface levels of CD20. Based on these findings, we hypothesized (i) irradiation just prior to immunotherapy may provide new treatment options even in aggressive B cell tumors, which are resistant to current therapies in vivo (ii) The efficacy of induction of apoptosis varies with type of monoclonal antibodies in vitro.  相似文献   

7.
Treatment of chronic lymphocytic leukemia (CLL) patients with standard dose infusion of rituximab (RTX), 375 mg/m2, induces clearance of malignant cells from peripheral blood after infusion of 30 mg of RTX. After completion of the full RTX infusion, substantial recrudescence of CLL cells occurs, and these cells have lost > 90% of CD20. To gain insight into mechanism(s) of CD20 loss, we investigated the hypothesis that thrice-weekly low-dose RTX (20 or 60 mg/m2) treatment for CLL over 4 wk would preserve CD20 and enhance leukemic cell clearance. During initial infusions in all 12 patients, the first 30 mg of RTX promoted clearance of > 75% leukemic cells. Four of six patients receiving 20 mg/m2 RTX retained > or = 50% CD20, and additional RTX infusions promoted further cell clearance. However, four of six patients receiving 60 mg/m2 had CD20 levels < 20% baseline 2 days after initial infusions, and additional RTX infusions were less effective, presumably due to epitope loss. Our results suggest that when a threshold RTX dose is exceeded, recrudesced RTX-opsonized cells are not cleared, due to saturation of the mononuclear phagocytic system, but instead are shaved of RTX-CD20 complexes by acceptor cells. Thrice-weekly low-dose RTX may promote enhanced clearance of circulating CLL cells by preserving CD20.  相似文献   

8.
NOD mice deficient for B lymphocytes from birth fail to develop autoimmune or type 1 diabetes. To assess whether B cell depletion influences type 1 diabetes in mice with an intact immune system, NOD female mice representing early and late preclinical stages of disease were treated with mouse anti-mouse CD20 mAbs. Short-term CD20 mAb treatment in 5-wk-old NOD female mice reduced B cell numbers by approximately 95%, decreased subsequent insulitis, and prevented diabetes in >60% of littermates. In addition, CD20 mAb treatment of 15-wk-old NOD female mice significantly delayed, but did not prevent, diabetes onset. Protection from diabetes did not result from altered T cell numbers or subset distributions, or regulatory/suppressor T cell generation. Rather, impaired CD4+ and CD8+ T cell activation in the lymph nodes of B cell-depleted NOD mice may delay diabetes onset. B cell depletion was achieved despite reduced sensitivity of NOD mice to CD20 mAbs compared with C57BL/6 mice. Decreased B cell depletion resulted from deficient FcgammaRI binding of IgG2a/c CD20 mAbs and 60% reduced spleen monocyte numbers, which in combination reduced Ab-dependent cellular cytotoxicity. With high-dose CD20 mAb treatment (250 microg) in NOD mice, FcgammaRIII and FcgammaRIV compensated for inadequate FcgammaRI function and mediated B cell depletion. Thereby, NOD mice provide a model for human FcgammaR polymorphisms that reduce therapeutic mAb efficacy in vivo. Moreover, this study defines a new, clinically relevant approach whereby B cell depletion early in the course of disease development may prevent diabetes or delay progression of disease.  相似文献   

9.
We have previously reported that anti-Gal-alpha1,3Gal (Gal) IgG3 mAbs mediate a classical complement-dependent hyperacute rejection (HAR), while anti-Gal IgG1 mAbs mediate HAR that is dependent on complement, the Fc-gamma receptors FcgammaRII/III (CD32/CD16), and NK cells. IgG2a and IgG2b subclasses can activate complement and have FcgammaR binding properties in vitro. Whether these IgG subclasses can mediate HAR in vivo and the mechanisms by which they would do so are not known. In this study, we isolated spontaneous IgG switch mutants from an anti-Gal IgG1 hybridoma. In vitro complement-mediated hemolytic assays with mouse complement indicate that both anti-Gal IgG2a and IgG2b mAbs were more potent compared with the parent anti-Gal IgG1. In vivo administration of anti-Gal IgG2a and IgG2b mAbs into Gal-/- mice induced HAR of rat cardiac xenografts. HAR induced by anti-Gal IgG2a and IgG2b was dependent on complement activation and the presence of NK cells. Using FcgammaRIII-deficient (Gal-/-CD16-/-) recipients, we observed that HAR mediated by different anti-Gal IgG subclasses was variably dependent on FcgammaRIII, with IgG1>IgG2b>IgG2a=IgG3. Using FcgammaRI-deficient (Gal-/-CD64-/-) recipients, we observed that HAR mediated by anti-Gal IgG1, IgG2a, and IgG2b, but not by anti-Gal IgG3, was dependent on FcgammaRI. Collectively, these studies demonstrate the necessity and sufficiency of complement in IgG3-mediated HAR and the necessity of both complement and FcgammaR, especially FcgammaRI, in IgG1-, IgG2a-, and IgG2b-mediated HAR.  相似文献   

10.
The CD20 mAb ofatumumab (OFA) induces complement-mediated lysis of B cells. In an investigator-initiated phase II trial of OFA plus chemotherapy for chronic lymphocytic leukemia (CLL), OFA treatment promoted partial CLL B cell depletion that coincided with reduced complement titers. Remaining CLL B cells circulated with bound OFA and covalently bound complement breakdown product C3d, indicative of ongoing complement activation. Presumably, neither complement- nor effector cell-based mechanisms were sufficiently robust to clear these remaining B cells. Instead, almost all of the bound OFA and CD20 was removed from the cells, in accordance with previous clinical studies that demonstrated comparable loss of CD20 from B cells after treatment of CLL patients with rituximab. In vitro experiments with OFA and rituximab addressing these observations suggest that host effector mechanisms that support mAb-mediated lysis and tumor cell clearance are finite, and they can be saturated or exhausted at high B cell burdens, particularly at high mAb concentrations. Interestingly, only a fraction of available complement was required to kill cells with CD20 mAbs, and killing could be tuned by titrating the mAb concentration. Consequently, maximal B cell killing of an initial and secondary B cell challenge was achieved with intermediate mAb concentrations, whereas high concentrations promoted lower overall killing. Therefore, mAb therapies that rely substantially on effector mechanisms subject to exhaustion, including complement, may benefit from lower, more frequent dosing schemes optimized to sustain and maximize killing by cytotoxic immune effector systems.  相似文献   

11.
Prostaglandin E2 is observed at elevated levels during human immunodeficiency virus (HIV) infection and thus may contribute to the HIV-dependent immunosuppression. The mechanisms responsible for this increase are not understood. Evidence indicates that the viral envelope proteins perturb membrane signaling mediated by the CD4 receptor, suggesting that the free envelope protein and/or the intact virus may be responsible for the increase in prostaglandin E2 levels. In this study, we have used THP-1 human monocytes and THP-1 cells differentiated by 12-O-tetradecanoylphorbol-13-acetate treatment into macrophages to determine if the HIV envelope protein, gp120, or an anti-CD4 receptor antibody stimulates prostaglandin formation by interacting with the CD4 receptor. Incubation of THP-1 cells with OKT4A antibody greatly stimulated the CD4-p56lck receptor complex as estimated by enhanced p56lck autophosphorylation, while the gp120 gave small but significant responses. Monocytic THP-1 cells poorly metabolized arachidonic acid to prostaglandin E2 and thromboxane B2 as measured by high-pressure liquid chromatography analysis. Western blot (immunoblot) and Northern (RNA) blot analyses revealed that unstimulated monocytes expressed little prostaglandin H synthase 1 and 2 (PGHS-1 and -2). Incubation of the monocytes with lipopolysaccharide, OKT4A, or gp120 did not increase the formation of prostaglandins. The expression of PGHS-1 or PGHS-2 was also not increased. Differentiation of the monocytes to macrophages by 12-O-tetradecanoylphorbol-13-acetate treatment resulted in increased expression of PGHS-1 and increased formation of prostaglandins compared with that for the monocytes. Lipopolysaccharide stimulation of the macrophages increased the formation of prostaglandins and increased the expression of PGHS-2 in the macrophages. However, OKT4A or gp120 preparation, at concentrations that stimulated p56lck autophosphorylation, did not enhance the formation of prostaglandins or the expression of PGHS-1 or PGHS-2. OKT4A and gp120 also did not stimulate the release of arachidonic acid, indicating that phospholipase A2 was not activated by the CD4 receptor in either the THP-1 monocytes or macrophages. These results indicate that activation of the CD4-p56lck receptor signal transduction pathway by the HIV envelope protein does not increase prostaglandin formation.  相似文献   

12.
CD300F is known to exhibit inhibitory activity in myeloid cells through its intracellular ITIM. To investigate the effect of CD300F stimulation on TLR signaling, the human acute monocytic leukemia cell line THP-1 was treated with CD300F-specific mAbs or two synthetic peptides that represented the ITIM-like domains of CD300F. Treatment with these agents blocked TLR2-, 3-, 4-, and 9-mediated expression of proinflammatory mediators such as IL-8 and matrix metalloproteinase-9. The luciferase reporter assay in 293T cells and Western blot analysis of THP-1 cells revealed that these inhibitory actions were effective in pathways involving MyD88 and/or TRIF of TLR signaling and associated with marked suppression of IκB kinase activation, phosphorylation/degradation of IκB, and subsequent activation of NF-κB. Use of specific inhibitors and immunoprecipitation analysis further indicated that the inhibitory effects were mediated by Src homology 2 domain-containing phosphatase-1, a protein tyrosine phosphatase with inhibitory activity in hematopoietic cells. These data indicate that CD300F is an active regulator of TLR-mediated macrophage activation through its association with Src homology 2 domain-containing phosphatase-1 and that the synthetic peptides can be applied for the regulation of immune responses that are induced by TLRs.  相似文献   

13.
Several CD4 mAbs have entered the clinic for the treatment of autoimmune diseases or transplant rejection. Most of these mAbs caused CD4 cell depletion, and some were murine mAbs which were further hampered by human anti-mouse Ab responses. To obviate these concerns, a primatized CD4 mAb, clenoliximab, was generated by fusing the V domains of a cynomolgus macaque mAb to human constant regions. The heavy chain constant region is a modified IgG4 containing two single residue substitutions designed to ablate residual Fc receptor binding activity and to stabilize heavy chain dimer formation. This study compares and contrasts the in vitro properties of clenoliximab with its matched IgG1 derivative, keliximab, which shares the same variable regions. Both mAbs show potent inhibition of in vitro T cell responses, lack of binding to complement component C1q, and inability to mediate complement-dependent cytotoxicity. However, clenoliximab shows markedly reduced binding to Fc receptors and therefore does not mediate Ab-dependent cell-mediated cytotoxicity or modulation/loss of CD4 from the surface of T cells, except in the presence of rheumatoid factor or activated monocytes. Thus, clenoliximab retains the key immunomodulatory attributes of keliximab without the liability of strong Fcgamma receptor binding. In initial clinical trials, these properties have translated to a reduced incidence of CD4+ T cell depletion.  相似文献   

14.
Monocytes and macrophages play a major role in atherosclerosis development. Previously, we found that triglyceride (TG) promoted cell death of PMA-differentiated THP-1 macrophages. In this study, we compared the responsiveness of THP-1 monocytes and PMA-differentiated THP-1 macrophages to TNF-α-induced cell death. We found that, whereas THP-1 monocytes were TNF-α-resistant, THP-1 macrophages were sensitive to TNF-α-induced cell death. THP-1 monocytes treated with TG underwent cell death beginning at 24 h and addition of TNF-α further increased cell death. Based on these observations, we hypothesized that TG-induced differentiation of THP-1 monocytes into THP-1 macrophages, subsequently allowing sensitivity to TNF-α. To determine if TG could induce differentiation of THP-1 monocytes into THP-1 macrophages, we examined the mRNA expression levels of the macrophage-specific markers, CD11b, CD18, CD36 and CD68, by RT-PCR analysis. Our results show that expression of CD11b, CD36 and CD68 increased in TG-treated THP-1 monocytes in a dose- and time-dependent manner; furthermore, TNF-α expression was upregulated in TG-treated THP-1 monocytes. We have concluded that TG induces differentiation of THP-1 monocytes into macrophages concomitant with the production of TNF-α and increased sensitivity to TNF-α-dependent cell death.  相似文献   

15.
16.
The anti-CD20 monoclonal antibody (mAb) rituximab is now routinely used for the treatment of non-Hodgkins lymphoma and is being examined in a wide range of other B-cell disorders, such as rheumatoid arthritis. Despite intensive study, the mechanism of action still remains uncertain. In the current study, anti-CD20 mAb-induced calcium signaling was investigated. Previously, we grouped anti-CD20 mAbs into Type I (rituximab-like) and Type II (B1-like) based upon various characteristics such as their ability to induce complement activation and redistribute CD20 into detergent-insoluble membrane domains. Here we show that only Type I mAbs are capable of inducing a calcium flux in B cells and that this is tightly correlated with the expression of the B-cell antigen receptor (BCR). Inhibitor analysis revealed that the signaling cascade employed by CD20 was strikingly similar to that utilized by the BCR, with inhibitors of Syk, Src, and PI3K, but not EGTA, p38, or ERK1/2, completely ablating calcium flux. Furthermore, binding of Type I but not Type II mAbs caused direct association of CD20 with the BCR as measured by FRET and resulted in the phosphorylation of BCR-specific adaptor proteins BLNK and SLP-76. Crucially, variant Ramos cells lacking BCR expression but with unchanged CD20 expression were completely unable to induce calcium flux following ligation of CD20. Collectively, these data indicate that CD20 induces cytosolic calcium flux through its ability to associate with and "hijack" the signaling potential of the BCR.  相似文献   

17.
Although the precise pathogenesis of rheumatoid arthritis (RA) remains unclear, many cell populations, including monocytes, macrophages, endothelial cells, fibroblasts and B cells, participate in the inflammatory process. Ongoing research continues to evaluate the critical roles played by B cells in sustaining the chronic inflammatory process of RA. These findings have contributed to the development of targeted therapies that deplete B cells, such as rituximab, as well as inhibitors of B lymphocyte stimulation, such as belimumab. In a phase I trial, belimumab treatment significantly reduced CD20+ levels in patients with systemic lupus erythematosus. Phase I and phase II trials of rituximab found that rituximab plus methotrexate achieved significantly better American College of Rheumatology 50% responses for patients with RA than those patients receiving monotherapy with methotrexate. These clinical trial data present promising evidence for B cell targeted therapies as future therapeutic options for RA.  相似文献   

18.
19.
The present study was designed to examine the potential involvement of calcium ions as second messengers in the mediation of the staphylococcal enterotoxin A (SEA)/MHC class II-induced activation of human monocytes. Treatment of monocytes with a monomeric form of SEA failed to induce detectable changes in the level of intracellular calcium in either monocytes or THP-1 cells. However, cross-linking of SEA with biotin-avidin induced a rapid and transient increase in calcium levels in monocytes and in INF-gamma-treated THP-1 cells. This artificial cross-linking system was reproduced by natural physiologic ligands expressed on the surface of T lymphocytes. Delayed, transient, and concentration (cell as well as toxin)-dependent increases in the cytoplasmic level of free calcium in SEA-treated monocytes were observed upon the addition of autologous resting T cells or purified CD4+ cells, but not of CD8+ cells, B cells, or neutrophils. Antibodies against MHC class II Ag, TCR/CD3, and CD4 molecules inhibited the SEA-dependent interaction between monocytes and T cells as indicated by significant decreases in the rise of calcium levels observed in monocytes. Anti-CD8 and anti-class I antibodies did not affect the interaction between the monocytes and the T cells and failed to alter the calcium response. Taken together, these results suggest that the SEA-induced, T cell-dependent calcium mobilization in monocytes requires physical interactions between SEA-MHC class II, TCR/CD3, and CD4 molecules. The ability to mediate a T cell-dependent calcium increase in monocytes was shared by several enterotoxins including staphylococcal enterotoxin B and toxic shock syndrome toxin-1. The characteristics of the SEA-mediated calcium mobilization in monocytes strongly support the hypothesis that this response is an integral part of the signal transducing machinery linked to MHC class II molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号