首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pro-opiomelanocortin (POMC), the common precursor to beta-endorphin and alpha-melanocyte-stimulating hormone in rat neurointermediate lobe cells, exhibits both charge and size heterogeneity on two-dimensional gel electrophoretograms. Short term [3H]phenylalanine pulse-labeling, and pulse-chase studies, revealed that this heterogeneity is acquired either co-translationally, through the addition of mannose-rich oligosaccharide chains to the nascent protein, or post-translationally, probably during the period of oligosaccharide processing from the high mannose to the complex forms. In this process, radioactive sulfate is incorporated into different glycoprotein variants of POMC. In the presence of tunicamycin, an inhibitor of the N-glycosylation process, [35S]sulfate incorporation does not occur in any of the major variant forms of POMC, thereby preventing the appearance of the most acidic forms on two-dimensional gels. POMC tryptic fragments were separated by high-pressure liquid chromatography. Sulfate incorporation occurred in only two peptides that were also labeled with [3H]glucosamine. Extensive alkaline digestion of these peptides in the presence of sodium borohydride released the sulfate-containing moieties which were separated from free amino acids by gel filtration. Sulfate bearing moieties could also be released by almond emulsin peptide:N-glycosidase digestion. All these results unambiguously show that sulfate moieties preferentially enter asparagine-linked carbohydrate side chains and not amino acid residues of the POMC polypeptide. It is also likely that differential sulfation, conferring unequal amounts of negative charge upon various glycoprotein variants of POMC, is responsible for much of the charge heterogeneity displayed by the prohormone.  相似文献   

2.
1. Excised discs of potato (Solanum tuberosum) tuber were incubated with [3H]fucose and extracts were prepared and incubated with an antibody to phenylalanine ammonia-lyase. Analysis of the resulting immunoprecipitated proteins by SDS/PAGE showed [3H]mannose- and [3H]fucose-labelled bands with Mr values corresponding to those of phenylalanine ammonia-lyase subunits. 2. When potato discs were incubated with [3H]sugars in the presence of tunicamycin, an inhibitor of N-linked protein glycosylation, incorporation of radioactivity from [3H]mannose into the immunoprecipitated enzyme subunits was virtually eliminated, whereas that from [3H]fucose was only marginally inhibited. 3. Tunicamycin reduced the level of extractable phenylalanine ammonia-lyase activity induced in excised potato tuber discs. Kinetic analysis revealed that the Vmax value of the enzyme in crude extracts from tunicamycin-treated tissue was reduced, whereas the apparent Km values were unaffected. 4. Immunoprecipitation of the enzyme labelled in vivo with [35S]methionine showed that tunicamycin did not inhibit the synthesis of the enzyme protein per se, nor did it increase the degradation of the enzyme protein. 5. Immunoprecipitation of the enzyme labelled in vitro with [14C]nitromethane showed that tunicamycin did not affect the introduction of the dehydroalanine residue into the active site. 6. These results are consistent with the following hypothesis: tunicamycin inhibits the N-linked glycosylation of phenylalanine ammonia-lyase which, in turn, results in imperfect folding of the enzyme protein. The orientation of the active site is changed in such a way that the affinity of the enzyme for its substrate is unaffected, whereas the catalytic activity of the enzyme is reduced. 7. Both optical- and electron-microscopic immunolocalization studies with antibody to phenylalanine ammonia-lyase showed increased deposition of silver granules in cells in sections of potato discs in which induction of the enzyme was allowed to occur compared with cells from newly wounded tissue. The enzyme was located in the cytoplasm, and was possibly membrane-associated.  相似文献   

3.
Two-dimensional polyacrylamide gel analyses of purified human and monkey liver phenylalanine hydroxylase reveal that the enzyme consists of two different apparent molecular weight forms of polypeptide, designated H (Mr = 50,000) and L (Mr = 49,000), each containing three isoelectric forms. The two apparent molecular weight forms, H and L, represent the phosphorylated and dephosphorylated forms of phenylalanine hydroxylase, respectively. After incubation of purified human and monkey liver enzyme with purified cAMP-dependent protein kinase and [gamma-32P]ATP, only the H forms contained 32P. Treatment with alkaline phosphatase converted the phenylalanine hydroxylase H forms to the L forms. The L forms but not the H forms could be phosphorylated on nitrocellulose paper after electrophoretic transfer from two-dimensional gels. Phosphorylation and dephosphorylation of human liver phenylalanine hydroxylase is not accompanied by significant changes in tetrahydrobiopterin-dependent enzyme activity. Peptide mapping and acid hydrolysis confirm that the apparent molecular weight heterogeneity (and charge shift to a more acidic pI) in human and monkey liver enzyme results from phosphorylation of a single serine residue. However, phosphorylation by the catalytic subunit of cAMP-dependent protein kinase does not account for the multiple charge heterogeneity of human and monkey liver phenylalanine hydroxylase.  相似文献   

4.
Metabolism of cartilage proteins in cultured tissue sections.   总被引:4,自引:3,他引:1       下载免费PDF全文
The asparagine-linked oligosaccharides of the complex acidic-type from [3H]mannose-, [3H]glucosamine- or [3H]galactose-labelled membrane glycoproteins of BHK21 cells and Rous-sarcoma virus were analysed by gel filtration combined with extensive digestion with endo- and exo-glycosidases from bacterial and eukaryotic sources. The neutral products from the digestion with a mixture of exoglycosidases and endo-beta-N-acetylglucosaminidase D from Diplococcus pneumoniae included a series of [3H]mannose- and [3H]glucosamine-labelled neutral oligosaccharides that were all converted by digestion with eukaryotic beta-N-acetylglucosaminidases into free N-acetylglucosamine and a small oligomannosyl core containing two alpha-linked mannose residues and a third mannose residue beta-linked to N-acetylglucosamine. These studies suggested that the complex acidic-type oligosaccharides from cellular and viral membrane glycoproteins contained a common oligomannosyl core region (Man2 alpha leads to Man beta leads to GlcNAc2), with heterogeneity in the number and/or linkage of outer branch N-acetylglucosamine residues resulting in partial resistance to beta-N-acetylglucosaminidase from a bacterial source.  相似文献   

5.
Chicken embryo fibroblasts (C/E phenotype) infected with subgroups B and C of the Prague strain of Rous sarcoma virus were radiolabeled with either [6-(3)H]-glucosamine or [2-(3)H]mannose, and virus was purified from the growth medium. The large envelope glycoprotein, gp85, was the only major radiolabeled component of purified virus. Pronase-digested glycopeptides from purified virus were analyzed by a combination of (i) gel filtration with columns of Sephadex G15/G50 and Bio-Gel P4 and (ii) enzymatic digestion of the oligosaccharide chains with specific exoglycosidases and endo-beta-N-acetylglucosaminidases. The rather broad molecular weight distribution (approximately 2,000 to 4,000) for glycopeptides in these studies and previous studies in other laboratories was shown to represent actual heterogeneity in the carbohydrate moieties: (i) the glycopeptides contained both mannose-rich, neutral chains and complex, acidic chains with terminal sialic acid; and (ii) both classes of asparagine-linked carbohydrate structures exhibited heterogeneity in the size of the oligomannosyl core (a mixture of approximately 5 to 9 mannose units for the neutral structures, and 3 or 5 mannose units for the acidic structures). With the [2-(3)H]mannose-labeled glycopeptides from Rous sarcoma virus, Prague strain subgroup C, most of the oligosaccharide chains were high-molecular-weight, acidic structures, with similar numbers of 3-mannose and 5-mannose core structures.  相似文献   

6.
FRTL-5 cells were cultured in media containing standard growth factors with or without TSH, plus labeled precursors of N-linked oligosaccharide chains. The thyroglobulin secreted in the medium was purified and fragmented with CNBr. Three peptides were identified by NH2-terminal sequencing, that were labeled mainly with D-[2-3H]mannose, independent of TSH. One of them, corresponding to the NH2-terminus of thyroglobulin, incorporated both more D-[2-3H]mannose and more D-[1-3H]galactose upon TSH addition. These data likely reflect a TSH-induced increment of N-linked glycosylation at the NH2-terminus of thyroglobulin, mostly with the maturation of high-mannose to complex chains.  相似文献   

7.
Cell surface receptors for immunoglobulin E were isolated by repetitive affinity chromatography from rat basophilic leukemia cells biosynthetically labeled with L-[35S]methionine and D-[3H]mannose. Native immunoglobulin E receptor appeared as a very broad band in the 45,000 to 62,000 Mr region in sodium dodecyl sulfate polyacrylamide gels. However, from cells cultured in the presence of tunicamycin, a relatively narrow band with an apparent Mr of 38,000 was isolated. The 38,000 Mr band rebound to immunoglobulin E-Sepharose, was immunoprecipitated with antibodies to immunoglobulin E receptor, shared tryptic peptides with native receptor, and was labeled with L-[35S]methionine but not D-[3H]mannose, and thus appears to be immunoglobulin E receptor lacking N-linked oligosaccharides. It is demonstrated that N-linked oligosaccharides account for much of the apparent heterogeneity of native receptor in sodium dodecyl sulfate polyacrylamide gels and in two-dimensional gel electrophoresis. A receptor-associated protein with apparent Mr = 30,000, prominently labeled with L-[35S]methionine but not with D-[3H]mannose, did not have altered molecular properties when isolated from tunicamycin-cultured cells, and did not share tryptic peptides with receptor.  相似文献   

8.
Interleukin 3 (IL-3) derived from mouse T cells was biosynthetically labeled with either [35S]methionine or [3H]mannose, affinity-purified using various anti-IL-3 antibodies, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography revealed the same three major bands with Mr values of 21,500-22,500, 27,000-31,000, and 32,000-36,000, irrespective of whether the anti-IL-3 antibody had been directed to the N or C termini of the IL-3 polypeptide. Bioassay of eluates from the gels confirmed that all three bands exhibited IL-3 bioactivity. IL-3 produced from two nonphysiological sources, the myelomonocytic leukemia WEHI-3B or Cos 7 cells that had been transfected with an IL-3 cDNA clone, had in each case a different pattern of microheterogeneity. Treatment with either tunicamycin or N-glycanase resulted in IL-3 running as one band with Mr 16,000, corresponding to its 140-amino acid polypeptide chain. No evidence for proteolytic processing was detected. These results show that the Mr heterogeneity of IL-3 was highly dependent on the cellular source and is due to N-linked glycosylation.  相似文献   

9.
Biosynthesis of proteodermatan sulfate in cultured human fibroblasts   总被引:18,自引:0,他引:18  
Biosynthesis and secretion of proteodermatan sulfate produced by cultured human skin fibroblasts were investigated employing immunological procedures. During an incubation period of 10 min in the presence of [3H]leucine, two core protein forms of Mr = 46,000 and 44,000, respectively, were synthesized. They were converted to mature proteodermatan sulfate with a half-time of approximately 12 min. Fifty per cent of total mature proteodermatan sulfate were found in the culture medium after a 35-min chase. Six to eight per cent remained associated with the cell layer after a chase of 6 h. In the presence of tunicamycin, fibroblasts synthesized a single core protein of Mr = 38,000 that was converted to mature proteodermatan sulfate and secreted with similar kinetics as the N-glycosylated species. Subtle differences in the molecular size of core proteins were noted when cell-associated and secreted proteodermatan sulfate were degraded with chondroitin ABC lyase, but core proteins free of N-linked oligosaccharides were identical. Labeling with [3H]mannose revealed that secreted proteodermatan sulfate contains two or three complex-type or two complex-type and one high-mannose-type N-linked oligosaccharide chains. The N-glycans are bound to a 21-kDa fragment of the core protein. After incubation in the presence of [3H]glucosamine, the [3H]galactosamine/[3H]glucosamine ratio was 3.76 and 3.30 for secreted and cell-associated proteodermatan sulfate, respectively. Evidence for the presence of O-linked oligosaccharides could not be obtained. Small amounts of core protein free of dermatan sulfate chains were secreted when the cultures were treated with p-nitrophenyl-beta-D-xyloside.  相似文献   

10.
Rat chondrosarcoma chondrocytes were labeled with [3H]serine or [3H]mannose as a precursor. Intracellular proteoglycan core protein precursor was purified from cell lysates by immunoprecipitation with polyclonal antibodies against the hyaluronic acid-binding region, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The core precursor was eluted from the gels and treated with alkaline borohydride in order to convert serine residues substituted with xylose or N-acetylgalactosamine to alanine (or with alkaline sulfite to convert them to cysteic acid). After acid hydrolysis, the proportions of labeled serine and alanine (or cysteic acid) were determined by high performance liquid chromatography, and the results were compared with those obtained for the completed proteoglycan molecules isolated from the same cultures. In the completed proteoglycans, about 55% of the serine residues were substituted with xylose or N-acetylgalactosamine, while the corresponding figure for the intracellular precursor molecules was less than 5%. These results indicate, in agreement with our previous kinetic data, that the major part of the xylosyl transfer to the chondrosarcoma proteoglycan core protein precursor must occur late in the processing sequence, i.e. after about 85% of its intracellular lifetime and no more than 7 min before the addition of the rest of the chondroitin sulfate chain. The ratio of [3H]mannose to [3H]fucose in the core precursor was about 19, while that for the complete proteoglycan was about 2. This indicates the presence of high mannose, N-linked oligosaccharides on the core protein precursor which are converted to the complex forms on the completed proteoglycan. These data provide further support that the core precursor resides mainly in the pre-Golgi compartment and that xylosylation occurs mainly in a Golgi compartment.  相似文献   

11.
Tolerance to ethanol was induced in male Sprague-Dawley rats (225-250 g) by chronic feeding with a liquid diet containing 6.5% ethanol (v/v). Control rats were pair-fed with a liquid diet in which the ethanol was replaced by an equicaloric concentration of sucrose. Immediately following sacrifice of the animals the neurointermediate lobes (NIL) were removed and incubated with [3H]phenylalanine. The biosynthesized proopiomelanocortin (POMC), beta-lipotropin (beta-LPH), and beta-endorphin (beta-EP) were purified by immunoprecipitation with an antiserum to beta-EP and analyzed by sodium dodecyl sulfate polyacrylamide disc gel electrophoresis. Alcohol treatment for 3 days had no effect on the degree of incorporation of [3H]phenylalanine into POMC, beta-LPH, and beta-EP but treatment for either 15 or 21 days increased the incorporation of [3H]phenylalanine into all three peptides. Ethanol treatment also increased the beta-endorphinlike immunoreactivity (beta-EPLIR) found in the incubation medium, but no significant change was observed in the beta-EPLIR extracted from the NIL either immediately after sacrifice or after 3 h of incubation of the NIL. However, a significant decrease of beta-EPLIR was found in the anterior lobes of rats treated with ethanol for 21 days. Furthermore, the beta-EPLIR in the serum of alcohol-treated rats was significantly higher than in the serum of their corresponding controls. These results indicate an effect of ethanol on the endorphin system and are consistent with the suggestion that endorphins may be mediators of some of the ethanol effects.  相似文献   

12.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

13.
Maltase-glucoamylase (MGA) was immunoprecipitated from detergent extracts of brush border membranes of the human small intestinal mucosa. Electrophoretic analysis of the precipitates under denaturing conditions revealed a single polypeptide of Mr = 335,000 in the presence or absence of reducing agents. Cross-linking of brush border membranes with the homobifunctional reagent dithiobis(succinimidylpropionate) did not result in considerable changes in the electrophoretic pattern of MGA. In contrast, aminopeptidase N, used in these studies as a control glycoprotein of the brush border membrane revealed dimeric structures of its single subunit in the presence of dithiobis(succinimidylpropionate). These data suggest that MGA is expressed in the human small intestinal brush border as a monomeric polypeptide. The biosynthesis of MGA was studied by pulse-labeling of human intestinal biopsy specimens or mucosal explants in organ culture. Continuous labeling with [35S]methionine for 30 min revealed a single polypeptide high mannose precursor of Mr = 285,000 (MGAh) which matures after 4 h of labeling to the Mr = 335,000 as judged by the susceptibility of these two forms to endo-beta-N-acetylglucosaminidase H. Owing to the absence of pancreatic secretions in the culture medium and the isolation of an identical species from nonlabeled mucosa, this result indicates that the Mr = 335,000 does not undergo an in situ extracellular cleavage by intraluminal proteases. Further, biosynthetically labeled, intracellularly cleaved polypeptides corresponding to the high mannose precursor or mature forms of MGA were not detected. The mature form of MGA (MGAm) bears in addition to N-linked glycans also O-glycosidically linked oligosaccharides. In fact, endo-beta-N-acetylglucosaminidase F/glycopeptidase F treatment of MGAm followed by chemical deglycosylation with trifluoromethanesulfonic acid revealed approximately 35,000 daltons of O-linked sugars. Furthermore, MGAm as well as its N-linked sugars-depleted form bound to Helix pomatia lectin which has specificity toward Gal-GalNAc structures. In addition, the data were suggestive of a post-translational O-glycosylation of the molecule since (i) the high mannose precursor of MGA did not bind to H. pomatia lectin and (ii) its endo-beta-N-acetylglucosaminidase H or endo-beta-N-acetylglucosaminidase F/glycopeptidase F form displayed an apparent molecular weight similar to that obtained upon endo-beta-N-acetylglucosaminidase F/glycopeptidase F/trifluoromethanesulfonic acid deglycosylation. Finally, pulse-chase experiments revealed a relatively slow rate of post-translational processing of MGA in comparison to aminopeptidase N.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
beta-Adrenergic stimulation of rat parotid acinar cells markedly increases [3H]mannose incorporation into N-linked glycoproteins [Kousvelari, Grant, Banerjee, Newby & Baum (1984) Biochem. J. 222, 17-24]. More than 90% of this protein-bound [3H]mannose was preferentially incorporated into four secretory glycoproteins. The ratio of [3H]mannose/[14C]leucine present in these individual proteins was 1.7-4-fold greater with isoproterenol-treated cells than with untreated controls. In isoproterenol-stimulated cells, [3H]mannose incorporation into mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol was increased 2-3-fold over that observed in unstimulated cells. Similarly, formation of mannosylated oligosaccharide-PP-dolichol was increased approx. 4-fold in microsomes prepared from isoproterenol-treated cells. Also, turnover of oligosaccharide-PP-dolichol was significantly increased (5-fold) by beta-adrenergic stimulation; the half-life for oligosaccharide-PP-dolichol decreased from 6 min in control cells to 1.2 min in isoproterenol-stimulated cells. By 15 min after isoproterenol addition to acinar cells, the specific radioactivity of parotid oligosaccharide moieties increased about 3-fold over the value observed in the absence of the agonist. Taken together, these results strongly suggest that elevation of N-linked protein glycosylation in rat parotid acinar cells after beta-adrenoreceptor stimulation resulted from significant enhancement in the synthesis of mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol and the turnover of oligosaccharide-PP-dolichol.  相似文献   

15.
Challenge of human A375 melanoma cells with sodium arsenite induced the synthesis of stress proteins and stimulated [3H]mannose incorporation into a novel component migrating on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass of 14 kDa (designated M14). Enhanced M14 expression was elicited by heavy metals (zinc, copper, cadmium, and nickel), thiol-reactive agents (iodoacetamide and auranofin), and hyperthermia. The kinetics of M14 induction and recovery from stress were similar to those of the stress proteins, but M14 half-life was only 15 min. Incorporation of [3H]mannose into M14 was inhibited by tunicamycin but not by cycloheximide or actinomycin D. M14 was metabolically labeled with [32P]orthophosphate but not by [35S] methionine or [3H]asparagine. Further studies revealed that M14 was selectively soluble in chloroform/methanol/water (10:10:3) and sensitive to both endo-beta-N-acetylglucosaminidase H digestion and mild acid hydrolysis. The latter released a water-soluble mannose-labeled moiety which eluted from Bio-Gel P-6 in a manner similar to Glc3Man9GlcNAc2. Together, these data suggest that M14 is a lipid-oligosaccharide intermediate of N-linked protein glycosylation and that enhanced expression of this class of molecule in response to chemical insults and hyperthermia is a newly described cellular reaction to stress.  相似文献   

16.
The alterations in complex-type N-linked oligosaccharides that can occur when an animal cell line is transformed by two dissimilar viruses were examined by comparing the N-linked oligosaccharides of baby hamster kidney (BHK) cells, metabolically radiolabeled with [2-3H]mannose, to the same class of oligosaccharides from BHK cells separately transformed by Rous sarcoma virus (RS-BHK), an RNA retrovirus, and polyoma virus (PY-BHK), a DNA papovavirus. Based on experiments that utilized serial lectin affinity chromatography, glycosidase digestions, and methylation analyses, both RS-BHK and PY-BHK cells demonstrated a significant increase in the relative amounts of tri- and tetraantennary complex-type N-linked oligosaccharides containing the branching sequence, [GlcNAc-beta(1,6)Man-alpha(1,6)Man], compared to the nontransformed BHK cells. In addition, almost all of the poly-N-acetyllactosamine sequence, [GlcNAc-beta(1,3)-Gal-beta(1,4)], was expressed on the tri- and tetraantennary N-linked oligosaccharides from BHK and RS-BHK cells that contain the sequence, [GlcNAc-beta(1,6)Man-beta(1,6)Man]. The increase in the relative amounts of this latter sequence in the transformed cells, therefore, most likely results in an increase in the amount of poly-N-acetyllactosamine sequence on the N-linked glycopeptides of these cells. The analysis of the degree of sialylation of the complex-type N-linked oligosaccharides from BHK and RS-BHK cells by ion exchange chromatography revealed no apparent differences, and in both of these cell types approximately 3% of the glycopeptide fraction radiolabeled with mannose was recovered in a highly negatively charged fraction that was identified by keratanase digestion to be keratan sulfate.  相似文献   

17.
The site-specific glycosylation patterns of two H-2K alleles, k and b, were determined on splenic T cells metabolically labeled with [3H]mannose. Cells from B10, B10.A, (B10 X B10.A)F1, and C3H mice were examined, along with the effect of short- (8 hr) and long-term (36 hr) mitogenic stimulation. For both glycosylation sites (Asn86 and Asn176) of both antigens, 80% of the structures consisted of mono- and bisialylated biantennary N-linked complex oligosaccharides, with the remaining consisting of smaller (probably high mannose) structures. Asn176 of both H-2Kk and H-2Kb contained the same ratio (2.8 to 1) of bi- to monosialylated chains. However, Asn86 of H-2Kb contained a higher ratio (5 to 1), while Asn86 of H-2Kk a lower ratio (1.5 to 1). This difference was seen on antigens isolated from cells of the parental strains as well as from the F1 cross. The glycosylation of H-2Kk did not vary between B10.A and C3H mice. Mitogenic stimulation increased markedly both total [3H]mannose incorporation and the spectrum of N-linked oligosaccharides labeled. For H-2Kk, it had no effect on sialylation, but resulted in a slight under galactosylation of the monosialylated structures at both sites. A comparison of the patterns seen here, determined on nontransformed T cells, with those previously determined on H-2Kk from a B lymphoma line, revealed marked differences in sialylation and branching patterns at both sites. These data indicate that glycosylation differences may be found between highly homologous (91%) alleles of an H-2 gene, even when co-dominantly expressed by F1 cells; however, the patterns do change with mitogenic stimulation, and between normal and transformed cells.  相似文献   

18.
Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).  相似文献   

19.
Calcitonin contains an amino acid sequence that provides a potential site for glycosylation of the peptide at the asparagine at position 3. Preliminary evidence has suggested that there are glycosylated forms of calcitonin and its precursor, procalcitonin. The CA-77 rat medullary thyroid carcinoma cell line, recently developed to study calcitonin biosynthesis, was used to demonstrate the synthesis of glycosylated forms of this hormone by intact cells. Cultures were incubated in medium containing either [3H]mannose or [35S]methionine. Two species incorporating both labels were specifically immunoprecipitated when cell extracts were treated with calcitonin antibodies. Gel filtration chromatography in 6 M guanidine hydrochloride indicated that one peptide had a molecular weight of 5500, approximately 2000 daltons larger than calcitonin, while the second peptide had a molecular weight of 14 400, the approximate size of procalcitonin. Treatment of the [3H]mannose-labeled cell extract with endo-beta-N-acetylglucosaminidase H before immunoprecipitation removed the labeled sugar from the calcitonin species. Microsequence analysis of the radiolabeled immunoreactive 5500-dalton calcitonin species showed methionine at cycle 8 and mannose at cycle 3, suggesting that this peptide is calcitonin containing an N-linked oligosaccharide at Asn-3. These results suggest that in this cell line a minor but significant biosynthetic pathway exists for the production of glycosylated calcitonin from glycosylated procalcitonin.  相似文献   

20.
Explants of rat neurointermediate lobes were incubated in the presence of radioactive amino acids, sugars or sulfate and the labeled proteins were separated by two-dimensional gel electrophoresis. A double series of acidic peptides (Mr = 16,000-21,500) were identified as variant forms of the amino-terminal glycopeptide of pro-opiomelanocortin (N-POMC). The series of peptides with the higher molecular weights (Mr = 18,000-21,500) contain a tryptic fragment (tentatively identified as the tryptic peptide of the "joining peptide": sequence 77 to 93 of rat POMC) which is absent from the forms of the lower molecular weight series (Mr = 16,000 to 18,000). Pulse-chase studies further showed that the high molecular weight forms of N-POMC could be post-translationally cleaved albeit slowly into the species of Mr = 16,000-18,000 which constitute, at least in part, the final maturation products of the N-terminal region of the precursor molecule. All the variant forms of the N-POMC glycopeptide could be labeled with [35S]sulfate. Our results strongly suggest that most of the sulfate groups are attached to N-linked oligosaccharide side chains of N-POMC. We therefore propose that one of the final maturation products of the N-terminal portion of POMC in rat intermediate lobes is a sulfated glycopeptide (Mr = 16,000-18,000) composed of the 1-74 sequence of rat POMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号