首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exopolysaccharide of Bacillus licheniformis ATCC 9945 (formerly B. subtilis ATCC 9945) contains among other glycoses 4-acetamido-2-amino-2,4,6-trideoxy-D-glucose, termed N-acetylbacillosamine (Bac2N4NAc). A similar diamino glycose, 2-acetamido-4-amino-2,4,6-trideoxy-D-glucose, was found in a surface layer (S-layer) glycoprotein preparation of Clostridium symbiosum HB25. Electron microscopic studies, however, showed that B. licheniformis ATCC 9945 is not covered with an S-layer lattice, indicating that the N-acetylbacillosamine present in that organism might be a constituent of a cell wall-associated polymer. For elucidation of the structure of the N-acetylbacillosamine-containing polysaccharide, it was purified from a trichloroacetic acid extract of B. licheniformis ATCC 9945 cells. Using different hydrolysis protocols and a hydrolysate of the S-layer glycoprotein preparation from C. symbiosum HB25 as reference, the purified polysaccharide was found to contain 2,4-diamino-2,4,6-trideoxy-glucose, 2-acetamido-2-deoxy-glucose, 2-acetamido-2-deoxy-galactose and galactose in a molar ratio of 1 : 1 : 1 : 2. One- and two-dimensional NMR spectroscopy, including 800 MHz proton magnetic resonance measurements, in combination with chemical modification and degradation experiments, revealed that the polysaccharide consists of identical pyruvylated pentasaccharide repeating units with the structure: [-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-alpha-D-GlcpNAc-(1-->3)-beta-D-Bacp2N4NAc-(1-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-beta-D-GalpNAc-(1-->](n)  相似文献   

2.
The surface-layer (S-layer) protein of Thermoanaerobacterium thermosaccharolyticum D120-70 contains glycosidically linked glycan chains with the repeating unit structure -->4)[alpha-D-Galp-(1-->2)]-alpha-L-Rhap-(1-->3)[beta-D-Glcp-(1--> 6)] -beta-D-Manp-(1-->4)-alpha-L-Rhap-(1-->3)-alpha-D-Glcp-(1--> . After proteolytic degradation of the S-layer glycoprotein, three glycopeptide pools were isolated, which were analyzed for their carbohydrate and amino-acid compositions. In all three pools, tyrosine was identified as the amino-acid constituent, and the carbohydrate compositions corresponded to the above structure. Native polysaccharide PAGE showed the specific heterogeneity of each pool. For examination of the carbohydrate-protein linkage region, the S-layer glycan chain was partially hydrolyzed with trifluoroacetic acid. 1D and 2D NMR spectroscopy, including a novel diffusion-edited difference experiment, showed the O-glycosidic linkage region beta-D-glucopyranose-->O-tyrosine. No evidence was found of additional sugars originating from a putative core region between the glycan repeating units and the S-layer polypeptide. For the determination of chain-length variability in the S-layer glycan, the different glycopeptide pools were investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry, revealing that the degree of polymerization of the S-layer glycan repeats varied between three and 10. All masses were assigned to multiples of the repeating units plus the peptide portion. This result implies that no core structure is present and thus supports the data from the NMR spectroscopy analyses. This is the first observation of a bacterial S-layer glycan without a core region connecting the carbohydrate moiety with the polypeptide portion.  相似文献   

3.
The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-L-Rhap-(1-->] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1--> core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band represents nonglycosylated S-layer protein.  相似文献   

4.
Geobacillus stearothermophilus NRS 2004/3a possesses an oblique surface layer (S-layer) composed of glycoprotein subunits as the outermost component of its cell wall. In addition to the elucidation of the complete S-layer glycan primary structure and the determination of the glycosylation sites, the structural gene sgsE encoding the S-layer protein was isolated by polymerase chain reaction-based techniques. The open reading frame codes for a protein of 903 amino acids, including a leader sequence of 30 amino acids. The mature S-layer protein has a calculated molecular mass of 93,684 Da and an isoelectric point of 6.1. Glycosylation of SgsE was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-beta-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->](n = 13-18), with a 2-O-methyl group capping the terminal trisaccharide repeating unit at the non-reducing end of the glycan chains. The glycan chains are bound via the disaccharide core -->3)-alpha-l-Rhap-(1-->3)-alpha-L-Rhap-(L--> and the linkage glycose beta-D-Galp in O-glycosidic linkages to the S-layer protein SgsE at positions threonine 620 and serine 794. This S-layer glycoprotein contains novel linkage regions and is the first one among eubacteria whose glycosylation sites have been characterized.  相似文献   

5.
Geobacillus tepidamans GS5-97(T) is a novel Gram-positive, moderately thermophilic bacterial species that is covered by a glycosylated surface layer (S-layer) protein. The isolated and purified S-layer glycoprotein SgtA was ultrastructurally and chemically investigated and showed several novel properties. By SDS-PAGE, SgtA was separated into four distinct bands in an apparent molecular mass range of 106-166 kDa. The three high molecular mass bands gave a positive periodic acid-Schiff staining reaction, whereas the 106-kDa band was nonglycosylated. Glycosylation of SgtA was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and electrospray ionization quadrupole time-of-fight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-alpha-D-Fucp-(1-->](n=approximately 20), with D-fucopyranose having never been identified before as a constituent of S-layer glycans. The rhamnose residue at the nonreducing end of the terminal repeating unit of the glycan chain was di-substituted. For the first time, (R)-N-acetylmuramic acid, the key component of prokaryotic peptidoglycan, was found in an alpha-linkage to carbon 3 of the terminal rhamnose residue, serving as capping motif of an S-layer glycan. In addition, that rhamnose was substituted at position 2 with a beta-N-acetylglucosamine residue. The S-layer glycan chains were bound via the trisaccharide core -->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1--> to carbon 3 of beta-D-galactose, which was attached in O-glycosidic linkage to serine and threonine residues of SgtA of G. tepidamans GS5-97(T).  相似文献   

6.
The Gram-positive bacterium Geobacillus stearothermophilus NRS 2004/3a possesses a cell wall containing an oblique surface layer (S-layer) composed of glycoprotein subunits. O-Glycans with the structure [-->2)-alpha-L-Rhap-(1-->3)-beta-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->](n) (= 13-18), a2-O-methyl group capping the terminal repeating unit at the nonreducing end and a -->2)-alpha-L-Rhap-[(1-->3)-alpha-L-Rhap](n) (= 1-2)(1-->3)- adaptor are linked via a beta-D-Galp residue to distinct sites of the S-layer protein SgsE. S-layer glycan biosynthesis is encoded by a polycistronic slg (surface layer glycosylation) gene cluster. Four assigned glycosyltransferases named WsaC-WsaF, were investigated by a combined biochemical and NMR approach, starting from synthetic octyl-linked saccharide precursors. We demonstrate that three of the enzymes are rhamnosyltransferases that are responsible for the transfer of L-rhamnose from a dTDP-beta-L-Rha precursor to the nascent S-layer glycan, catalyzing the formation of the alpha1,3- (WsaC and WsaD) and beta1,2-linkages (WsaF) present in the adaptor saccharide and in the repeating units of the mature S-layer glycan, respectively. These enzymes work in concert with a multifunctional methylrhamnosyltransferase (WsaE). The N-terminal portion of WsaE is responsible for the S-adenosylmethionine-dependent methylation reaction of the terminal alpha1,3-linked L-rhamnose residue, and the central and C-terminal portions are involved in the transfer of L-rhamnose from dTDP-beta-L-rhamnose to the adaptor saccharide to form the alpha1,2- and alpha1,3-linkages during S-layer glycan chain elongation, with the methylation and the glycosylation reactions occurring independently. Characterization of these enzymes thus reveals the complete molecular basis for S-layer glycan biosynthesis.  相似文献   

7.
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.  相似文献   

8.
The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi.  相似文献   

9.
The surface layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 has a total carbohydrate content of 15% (by mass), consisting of O-linked oligosaccharide chains. After proteolytic digestion of the S-layer glycoprotein byPronase E and subsequent purification of the digestion products by gel permeation chromatography, chromatofocusing and high-performance liquid chromatography two glycopeptide pools A and B with identical glycans and the repeating unit structure -->4)-alpha-l-Rha p -(1-->3)-beta-d- glycero -d- manno -Hep p -(1--> (Kosma et al., 1995b, Glycobiology, 5, 791-796) were obtained. Combined evidence from modified Edman-degradation in combination with liquid chromatography electrospray mass-spectrometry and nuclear magnetic resonance spectroscopy revealed that both glycopeptides contain equal amounts of the complete core structure alpha-l-Rha p -(1-->3)-alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and the truncated forms alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and beta-d-Gal p NAc-(1-->O)-Thr/Ser. All glycopeptides possessed the novel linkage types beta-d-Gal p NAc-(1-->O)-Thr/Ser. The different cores were substituted with varying numbers of disaccharide repeating units. By 300 MHz proton nuclear magnetic resonance spectroscopy the complete carbohydrate core structure of the fluorescently labeled glyco-peptide B was determined after Smith-degradation of its glycan chain. The NMR data confirmed and complemented the results of the mass spectroscopy experiments. Based on the S-layer glycopeptide structure, a pathway for its biosynthesis is suggested.  相似文献   

10.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

11.
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.  相似文献   

12.
First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content.  相似文献   

13.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5' end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA(31-1068)). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA(31-1068). Labeling of the square S-layer lattice formed by recrystallization of rSbpA(31-1068)/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

14.
Bacillus stearothermophilus strains PV 72 and ATCC 12980 carry a crystalline surface layer (S-layer) with hexagonal (p6) and oblique (p2) symmetry, respectively. Sites of insertions of new subunits into the regular lattice during cell growth have been determined by the indirect fluorescent antibody technique and the protein A/colloidal gold technique.During S-layer growth on both bacillus strains the following common features were noted: 1. shedding of intact S-layer or turnover of individual subunits was not seen; 2. new S-layer was deposited in helically-arranged bands over the cylindrical surface of the cell at a pitch angle related to the orientation of the lattice vectors of the crystalline array; 3. little or no S-layer was inserted into pre-existing S-layer at the poles, and 4. septal regions and, subsequently, newly formed cell poles were covered with new S-layer protein.  相似文献   

15.
Caulobacter crescentus CB15 is a dimorphic bacterium that is best known as a prokaryotic model for cell development. However, it is also being exploited in biotechnology, where the crystalline surface (S-layer) protein secretion system has been adapted for heterologous protein display or secretion. Because the S-layer attaches to the cell surface via lipopolysaccharide (LPS) and since the LPS represents a potential endotoxin contaminant of recombinant proteins, the lipid A component was examined in detail. LPS was acid hydrolyzed to obtain crude lipid A, which was methylated and purified by HPLC. HPLC peak fractions were analyzed by mass spectrometry and nuclear magnetic resonance spectroscopy. The structure of the major lipid A of C. crescentus comprised the tetrasaccharide backbone alpha-D-GalpA-(1-->4)-beta-D-DAG-(1-->6)-alpha-D-DAG-(1-->1)-alpha-D-GalpA substituted with six fatty acids, and a molecular mass of 1875 (GalpA, galactopyranuronic acid; DAG, 2,3-diamino-2,3-dideoxyglucopyranose). No phosphate residues were detected. The major lipid A component had 12:0[3-O[Delta(5)-12:1(3-OH)]] and 12:0[3-O(Delta(5)-12:1)] fatty acyl chains at either the 3'- or the 2' positions of the distal subunit DAG B, and 12:0(3-OH) and 12:0[3,6-(OH)( 2)] fatty acyl chains at 3- and 2- positions of the reducing end subunit DAG A, respectively. In addition, several other variations in the structure were observed. The LPS was evaluated for TNF-alpha inducing activity and consistent with its unusual lipid A structure (relative to that of enteric bacteria), the activity was reduced by greater than 100-fold as compared to Escherichia coli ReLPS. This and other evidence suggests the potential application of this lipid A as a vaccine adjuvant or the suitability of Caulobacter displaying antigens for formulation of whole cell vaccines.  相似文献   

16.
The Gram-positive, mesophilic bacterium Paenibacillus alvei CCM 2051T possesses a two-dimensional crystalline protein surface layer (S-layer) with oblique lattice symmetry composed of a single type of O-glycoprotein species. Herein, we describe a strategy for nanopatterned in vivo cell surface co-display of peptide and glycan epitopes based on this S-layer glycoprotein self-assembly system. The open reading frame of the corresponding structural gene spaA codes for a protein of 983 amino acids, including a signal peptide of 24 amino acids. The mature S-layer protein has a theoretical molecular mass of 105.95 kDa and a calculated pI of 5.83. It contains three S-layer homology domains at the N-terminus that are involved in anchoring of the glycoprotein via a non-classical, pyruvylated secondary cell wall polymer to the peptidoglycan layer of the cell wall. For this polymer, several putative biosynthesis enzymes were identified upstream of the spaA gene. For in vivo cell surface display, the hexahistidine tag and the enhanced green fluorescent protein, respectively, were translationally fused to the C-terminus of SpaA. Immunoblot analysis, immunofluorescence staining, and fluorescence microscopy revealed that the fused epitopes were efficiently expressed and successfully displayed via the S-layer glycoprotein matrix on the surface of P. alvei CCM 2051T cells. In contrast, exclusively non-glycosylated chimeric SpaA proteins were displayed, when the S-layer of the glycosylation-deficient wsfP mutant was used as a display matrix.  相似文献   

17.
Cell surface glycosylation is an important element in defining the life of pathogenic bacteria. Tannerella forsythia is a Gram-negative, anaerobic periodontal pathogen inhabiting the subgingival plaque biofilms. It is completely covered by a two-dimensional crystalline surface layer (S-layer) composed of two glycoproteins. Although the S-layer has previously been shown to delay the bacterium's recognition by the innate immune system, we characterize here the S-layer protein O-glycosylation as a potential virulence factor. The T. forsythia S-layer glycan was elucidated by a combination of electrospray ionization-tandem mass spectrometry and nuclear magnetic resonance spectroscopy as an oligosaccharide with the structure 4-Me-β-ManpNAcCONH(2)-(1→3)-[Pse5Am7Gc-(2→4)-]-β-ManpNAcA-(1→4)-[4-Me-α-Galp-(1→2)-]-α-Fucp-(1→4)-[-α-Xylp-(1→3)-]-β-GlcpA-(1→3)-[-β-Digp-(1→2)-]-α-Galp, which is O-glycosidically linked to distinct serine and threonine residues within the three-amino acid motif (D)(S/T)(A/I/L/M/T/V) on either S-layer protein. This S-layer glycan obviously impacts the life style of T. forsythia because increased biofilm formation of an UDP-N-acetylmannosaminuronic acid dehydrogenase mutant can be correlated with the presence of truncated S-layer glycans. We found that several other proteins of T. forsythia are modified with that specific oligosaccharide. Proteomics identified two of them as being among previously classified antigenic outer membrane proteins that are up-regulated under biofilm conditions, in addition to two predicted antigenic lipoproteins. Theoretical analysis of the S-layer O-glycosylation of T. forsythia indicates the involvement of a 6.8-kb gene locus that is conserved among different bacteria from the Bacteroidetes phylum. Together, these findings reveal the presence of a protein O-glycosylation system in T. forsythia that is essential for creating a rich glycoproteome pinpointing a possible relevance for the virulence of this bacterium.  相似文献   

18.
19.
Neisseria meningitidis trisaccharide [GlcNAc[(1-->3)Galbeta(1-->4)Glc-R], tetrasaccharide [Galbeta(1-->4)GlcNAcbeta(1--> 3)Galbeta(1-->4)Glc-R], and a pentasaccharide [Neu5Acalpha(2-->3)Galbeta(1-->4)GlcNAcbeta(1-->3)G albeta(1-->4)Glc-SPh] were prepared via conventional chemical synthesis, polymer-supported synthesis, and chemoenzymatic methods, starting from D-lactose. The polymer polyethyleneglycol monomethylether (MPEG) and the linker dioxyxylene (DOX) were used with a lactose-bound acceptor to improve the purification process. Several enzymes (LgtA, GalE-LgtB fusion, and CMP-Neu5Ac synthetase/sialyltransferase fusion) were used for syntheses of these oligosaccharides. Excellent stereo- and regioselectivities as well as high yield (> 90% from Gal(1-->4)Glc-SPh) of the pentasaccharide were obtained. Both of the convenient processes are suitable for efficient preparation of target oligosaccharides.  相似文献   

20.
Crystalline bacterial cell surface layer (S-layer) proteins are composed of a single protein or glycoprotein species. Isolated S-layer subunits frequently recrystallize into monomolecular protein lattices on various types of solid supports. For generating a functional protein lattice, a chimeric protein was constructed, which comprised the secondary cell wall polymer-binding region and the self-assembly domain of the S-layer protein SbpA from Bacillus sphaericus CCM 2177, and a single variable region of a heavy chain camel antibody (cAb-Lys3) recognizing lysozyme as antigen. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-Lys3. The functionality of the fused cAb-Lys3 in the S-layer fusion protein was proved by surface plasmon resonance measurements. Dot blot assays revealed that the accessibility of the fused functional sequence for the antigen was independent of the use of soluble or assembled S-layer fusion protein. Recrystallization of the S-layer fusion protein into the square lattice structure was observed on peptidoglycan-containing sacculi of B. sphaericus CCM 2177, on polystyrene or on gold chips precoated with thiolated secondary cell wall polymer, which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Thereby, the fused cAb-Lys3 remained located on the outer S-layer surface and accessible for lysozyme binding. Together with solid supports precoated with secondary cell wall polymers, S-layer fusion proteins comprising rSbpA(31)(-)(1068) and cAbs directed against various antigens shall be exploited for building up monomolecular functional protein lattices as required for applications in nanobiotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号