首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermostable N-acylamino acid recemase from Amycolatopsis sp. TS-1-60, a rare actinomycete strain selected for its ability to grow on agar plates incubated at 40° C, was purified to homogeneity and characterized. The relative molecular mass (M r) of the native enzyme and the subunit was estimated to be 300 000 and 40 000 on gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis respectively. The isoelectric point (pI) of the enzyme was 4.2. The optimum temperature and pH were 50° C and 7.5 respectively. The enzyme was stable at 55° C for 30 min. The enzyme catalyzed the racemization of optically active N-acylamino acids such as N-acetyl-l-or d-methionine, N-acetyl-l-valine, N-acetyl-l-tyrosine and N-chloroacetyl-l-valine. In addition, the enzyme also catalyzed the recemization of the dipeptide l-alanyl-l-methionine. By contrast, the optically active amino acids, N-alkyl-amino acids and methyl and athyl ester derivatives of N-acetyl-d- and l-methionine were not racemized. The apparent K m values for N-acetyl-l-methionine and N-acetyl-d-methionine were calculated to be 18.5 mM and 11.3 mM respectively. The enzyme activity was markedly enhanced by the addition of divalent metal ions such as Co2+, Mn2+ and Fe2+ and was inhibited by addition of EDTA and P-chloromercuribenzoic acid. The similarity between the NH2-terminal amino acid sequence of the enzyme and that of Streptomyces atratus Y-53 [Tokuyama et al. (1994) Appl Microbiol Biotechnol 40:835–840] was above 80%.  相似文献   

2.
The gene encoding the novel enzyme N-acylamino acid racemase (AAR) was cloned in recombinant phage -4 from the DNA library of Amycolatopsis sp. TS-1-60, a rare actinomycete, using antiserum against the enzyme. The cloned gene was subcloned and transformed in Escherichia coli JM105 using pUC118 as a vector. The AAR gene consists of an open-reading frame of 1104 nucleotides, which specifies a 368-amino-acid protein with a molecular mass of 39411Da. The molecular mass deduced from the AAR gene is in good agreement with the subunit molecular mass (40kDa) of AAR from Amycolatopsis sp. TS-1-60. The guanosine plus cytosine content of the AAR gene was about 70%. Although the AAR gene uses the unusual initiation codon GTG, the gene was expressed in Escherichia coli using the lac promoter of pUC118. The amount of the enzyme produced by the transformant was 16 times that produced by Amycolatopsis sp. TS-1-60. When the unusual initiation codon GTG was changed to ATG, the enzyme productivity of the transformant increased to more than 37 times that of Amycolatopsis sp. TS-1-60. In the comparison of the DNA sequence and the deduced amino acid sequence of AAR with those of known racemases and epimerases in data bases, no significant sequence homology was found. However, AAR resembles mandelate racemase in that requires metal ions for enzyme activity. Comparison of the deduced amino acid sequences of mandelate racemase and AAR revealed amino acid sequences in AAR similar to those of both the catalytic and metal-ion-binding sites of mandelate racemase.  相似文献   

3.
《Process Biochemistry》2007,42(4):606-611
In this research, the feasibility of using membrane mode fermentation operations for the continuous chitinase production by Paenibacillus sp. CHE-N1 was investigated. The bioreactor with a membrane outer recycling loop was used to evaluate the effect of membrane pore size on cell retention efficiency, permeate flow rate, fouling, and chitinase recovery in permeate. The results showed that at a transmembrane pressure of 0.9 kg/cm2, M 9 microfiltration column with a nominal pore size of 300 kDa exhibited the best microfiltration characteristics and was used for the membrane mode operation. As comparing the chitinase production in the membrane mode operation by feeding deionized water with that in batch mode, the total chitinase activity obtained in membrane operation could reach 42,800 mU for 132 h, about 78% higher than that obtained in batch mode operation. Further improvement by feeding chitin every 3–4 days showed a steadily continuous chitinase production with the activity ranging from 13 to 15 mU/ml at a flow rate of 500 ml/day. The membrane-based microfiltration operation appears to be useful for enhancing the chitinase activity production in fermentation.  相似文献   

4.
Less than 20 % of the amino acid content of the amino acid pool ofEscherichia coli B exists in theD-form. Alanine, glutamic acid, and valine were shown by gas-chromatography to be partially in theD-form. OnlyD-alanine was formed by racemization in the crude extract of this organism. Alanine racemase was easily released from the membranes or vesicles butD-alanine oxidase activity remained firmly bound to the membrane. Most protein amino acids stimulated proline uptake into the vesicles, and the oxidative deamination activities were verified by the proline uptake stimulating amino acids. It is concluded that the obligatory pathway of L-amino acid -D-amino acid - oxo acid which exists in the oxidation ofL-alanine does not exist with otherL-amino acids. It is likely that otherD-amino acids in the pool are formed in the presence ofD-amino acid oxidase orD-amino acid aminotransferase.  相似文献   

5.
The extracellular polysaccharides elaborated by most or all bacterial species function in cell-to-cell and cell-substratum adhesion, cell signaling, and avoidance or inhibition of noxious agents in animal hosts or free-living environments. Recent advances in our understanding of exopolysaccharide synthesis have been facilitated by comparative approaches in both plant and animal pathogens, as well as in microorganisms of industrial importance. One of the best understood of these systems is thekps locus for polysialic acid synthesis inEscherichia coli K1. The genes for sialic acid synthesis, activation, polymerization and translocation have been identified and assigned at least tentative functions in the synthetic and export pathways. Initial studies ofkps thermoregulation suggest that genetic control mechanisms will be involved which are distinct from those already described for several other exopolysaccharides. Information about the common as well as unique features of polysialic acid biosynthesis will increase our knowledge of microbial cell surfaces which in turn may suggest novel targets for therapeutic or industrial interventions.  相似文献   

6.
Summary Long-term continuous optical resolution of 2-(4-chlorophenoxy)propanoic acid was carried out by stereoselective esterification with Celite-adsorbed lipase OF 360 from Candida cylindracea using n-tetradecanol as the second substrate in organic solvent systems. The water content of the Celite-adsorbed lipase affected productivity, 1.0 l water·mg lipase–1 being optimal for preparation of the adsorbed lipase. Water-saturated carbon tetrachloride-isooctane (8:2, v/v) was found to be an excellent organic solvent for the continuous operation. The particle size of Celite had no effect on productivity. Under optimized conditions, the (R)-enantiomer of the acid was continuously esterified with high stereoselectivity in a packed-bed column reactor for 34 days. Furthermore, it was found that treatment of the reactor with acetone made it possible to restore productivity and extend the period of continuous operation for further 29 days. Offprint requests to: A. Tanaka  相似文献   

7.
Physiological parameters such as viability, gross RNA synthesis,β-galactosidase induction, development of phages T4, T7 andλ have been studied in temperature-sensitiveEscherichia coli strains harbouring fit A76,fit A24 andfit A76fit A24 mutations in rpoB+ andrpoB240 genetic backgrounds. The efficiently of expression of these functions is influenced by thefit A alleles depending upon the medium of growth and/or temperature. Strains harbouring therpoB240 mutation and thefit A76 mutation, either alone or together with thefit A24 mutation, are rifampicin-sensitive even at the perfssive temperature. The results suggest possible interaction between thefit A gene product and RNA polymerase invivo. This paper is dedicated to Proof. S. Krishnaswamy on his Sixty First Birthday.  相似文献   

8.
Various processes which producel-lactic acid using ammonia-tolerant mutant strain,Rhizopus sp. MK-96-1196, in a 3 L airlift bioreactor were evaluated. When the fed-batch culture was carried out by keeping the glucose concentration at 30 g/l, more than 140 g/l ofl-lactic acid was produced with a product yield of 83%. In the case of the batch culture with 200 g/l of initial glucose concentration, 121 g/L ofl-lactic acid was obtained but the low product yield based on the amount of glucose consumed. In the case of a continuous culture, 1.5 g/l/h of the volumetric productivity with a product yield of 71% was achieved at dilution rate of 0.024 h−1. Basis on these results three processes were evaluated by simple variable cost estimation including carbon source, steam, and waste treatment costs. The total variable costs of the fed-batch and continuous cultures were 88% and 140%, respectively, compared to that of batch culture. The fed-batch culture with highl-lactic acid concentration and high product yield decreased variable costs, and was the best-suited for the industrial production ofl-lactic acid.  相似文献   

9.
10.
The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ?=?0.1 h?1); slower growth was observed on succinate and acetic acid (μ?=?0.01 h?1). Standard conditions for growth of the MSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ?=?0.1 h?1 on traditional mineral salt medium to μ?=?0.18 h?1 on the optimized mineral salt medium. The biomass yield under standard conditions was 0.47 g dry weight biomass/g glucose consumed. An investigation of the catabolic capacity of MSH1 cells harvested in exponential and stationary growth phases showed a degradation activity per cell of about 3?×?10?9 μg BAM h?1. Thus, fast, efficient, large-scale production of herbicide-degrading Aminobacter was possible, bringing the use of this bacterium in bioaugmentation field remediation closer to reality.  相似文献   

11.
The gene encoding the fructosyl-amino acid oxidase (fructosyl-alpha-L-amino acid: oxygen oxidoreductase (defructosylating); EC 1.5.3) of Corynebacterium sp. 2-4-1 was cloned and expressed in Escherichia coli. The gene consists of 1,116 nucleotides and encodes a protein of 372 amino acids with a predicted molecular mass of 39,042. The open reading frame was confirmed as the gene of the fructosyl-amino acid oxidase by comparison with the N-terminal amino acid sequence of the purified fructosyl-amino acid oxidase from Corynebacterium sp. 2-4-1. The sequence of the AMP-binding motif, GXGXXG, was found in the deduced N-terminal region. The amino acid sequence of the fructosyl-amino acid oxidase showed no similarity to that of fungal fructosyl-amino acid oxidases. In addition, substrate specificities of this fructosyl-amino acid oxidase were different from those of other fructosyl-amino acid oxidases. The fructosyl-amino acid oxidase of Corynebacterium sp. 2-4-1 is an enzyme that has unique substrate specificity and primary structure in comparison with fungal fructosyl-amino acid oxidases.  相似文献   

12.
It is important to produce L(+)-lactic acid at the lowest cost possible for lactic acid to become a candidate monomer material for promising biodegradable polylactic acid. In an effort to develop a high-rate bioreactor that provides high productivity along with a high concentration of lactic acid, the performance of membrane cell-recycle bioreactor (MCRB) was investigated via experimental studies and simulation optimization. Due to greatly increased cell density, high lactic acid productivity, 21.6 g L(-1) h(-1), was obtained in the reactor. The lactic acid concentration, however, could not be increased higher than 83 g/L. When an additional continuous stirred tank reactor (CSTR) was attached next to the MCRB a higher lactic acid concentration of 87 g/L was produced at significant productivity expense. When the two MCRBs were connected in series, 92 g/L lactic acid could be produced with a productivity of 57 g L(-1) h(-1), the highest productivity among the reports of L(+)-lactic acid that obtained lactic acid concentration higher than 85 g/L using glucose substrate. Additionally, the investigation of lactic acid fermentation kinetics resulted in a successful model that represents the characteristics of lactic acid fermentation by Lactobacillus rhamnosus. The model was found to be applicable to most of the existing data with MCRBs and was in good agreement with Levenspiel's product-inhibition model, and the Luedeking-Piret equation for product-formation kinetics appeared to be effective in representing the fermentation kinetics. There was a distinctive difference in the production potential of cells (cell-density-related parameter in Luedeking-Piret equation) as lactic acid concentration increases over 55 g/L, and this finding led to a more precise estimation of bioreactor performance.  相似文献   

13.
The effect of 18 amino acids and 7 organic acids on the production ofl-asparaginase EC-2 by a strain ofEscherichia coli in a chemically defined medium was investigated under moderate aeration. All the amino acids and some of the organic acids stimulated the enzyme production. The specific activity without stimulants was about 0.16 nkat per mg dry weight, with stimulants it lay between 1 and 6 nkat per mg dry weight but withl-leucine andl-methionine the values were 12 nkat and 17 nkat per mg, respectively. When two organic or amino acids were added simultaneously at concentrations that were suboptimal for stimulation, the stimulating effects were cumulative in most cases. When cells were grown under conditions approaching anaerobiosis, the specific activity reached, even in the absence of stimulants, values as high as 5 nkat per mg; under these conditions, a further substantial increase in specific activity was only caused byl-leucine andl-methionine. Stimulating effects ofdl-lactate and of some amino acids were also found in other strains ofEscherichia coli. The ability to grow on a medium withl-asparagine as the sole source of both nitrogen and carbon was found in two strains; growth took place even when there was no measurable activity ofl-asparaginase EC-2.  相似文献   

14.
Abstract The amiE gene of Brevibacterium sp. R312 encoding wide spectrum amidase was isolated by complementation of a Brevibacterium sp. mutant using a plasmid gene bank of chromosomal DNA. The amiE structural gene and its promoter were localized on a 1.8-kb fragment by subsequent subcloning and complementation studies. In Brevibacterium sp., the investigation of amidase activities related to one copy of the gene suggested that the regulation of the amiE gene expression was under negative control. High expression levels have been obtained in Brevibacterium sp. and, after substitution of the amiE promoter by the tac promoter, in Escherichia coli .  相似文献   

15.
Succinic acid (SA) was produced from Actinobacillus succinogenes with high cell density by continuous fermentation using fibrous bed bioreactor (FBB). The effects of feeding glucose concentration, dilution rate, and pH on continuous production of SA were examined to achieve an efficient and economical bioprocess. The optimum feeding glucose concentration, dilution rate, and pH were 80 g/L, 0.05 1/h, and 6.0–6.5, respectively. A SA concentration of 55.3 ± 0.8 g/L, productivity of 2.77 ± 0.04 g/L/h, and yield of 0.8 ± 0.02 g/g were obtained, and the continuous fermentation exhibited long-term stability for as long as 18 days (440 h) with no obvious fluctuations in both SA and biomass levels. The Jerusalimsky equation for the specific rate of SA production presented the inhibition phenomenon of the product, demonstrating that 60 g/L SA might be a critical concentration in this continuous FBB system. The results obtained could be beneficial for future fermentor designs and improvements in SA production.  相似文献   

16.
D-Cycloserine is an effective second-line drug against Mycobacterium avium and Mycobacterium tuberculosis. To analyze the genetic determinants of D-cycloserine resistance in mycobacteria, a library of a resistant Mycobacterium smegmatis mutant was constructed. A resistant clone harboring a recombinant plasmid with a 3.1-kb insert that contained the glutamate decarboxylase (gadA) and D-alanine racemase (alrA) genes was identified. Subcloning experiments demonstrated that alrA was necessary and sufficient to confer a D-cycloserine resistance phenotype. The D-alanine racemase activities of wild-type and recombinant M. smegmatis strains were inhibited by D-cycloserine in a concentration-dependent manner. The D-cycloserine resistance phenotype in the recombinant clone was due to the overexpression of the wild-type alrA gene in a multicopy vector. Analysis of a spontaneous resistant mutant also demonstrated overproduction of wild-type AlrA enzyme. Nucleotide sequence analysis of the overproducing mutant revealed a single transversion (G-->T) at the alrA promoter, which resulted in elevated beta-galactosidase reporter gene expression. Furthermore, transformants of Mycobacterium intracellulare and Mycobacterium bovis BCG carrying the M. smegmatis wild-type alrA gene in a multicopy vector were resistant to D-cycloserine, suggesting that AlrA overproduction is a potential mechanism of D-cycloserine resistance in clinical isolates of M. tuberculosis and other pathogenic mycobacteria. In conclusion, these results show that one of the mechanisms of D-cycloserine resistance in M. smegmatis involves the overexpression of the alrA gene due to a promoter-up mutation.  相似文献   

17.
A Chinese hamster ovary (CHO) cell line that expresses human erythropoietin (huEPO) was in a 2-L Cytopilot fluidized-bed bioreactor with 400 mL macroporous Cytoline-1 microcarriers and a variable perfusion rate of serum-free and protein-free medium for 48 days. The cell density increased to a maximum of 23 x 10(6) cells/mL, beads on day 27. The EPO concentration increased to 600 U/mL during the early part of the culture period (on day 24) and increased further to 980 U/mL following the addition of a higher concentration of glucose and the addition of sodium butyrate. The EPO concentration was significantly higher (at least 2x than that in a controlled stirred-tank bioreactor, in a spinner flask, or in a stationary T-flask culture. The EPO accumulated to a total production of 28,000 kUnits over the whole culture period. The molecular characteristics of EPO with respect to size and pattern of glycosylation did not change with scale up. The pattern of utilization and production of 18 amino acids was similar in the Cytopilot culture to that in a stationary batch culture in a T-flask. The concentration of ammonia was maintained at a low level (< 2 mM) over the entire culture period. The specific rate of consumption of glucose, as well as the specific rates of production of lactate and ammonia, were constant throughout the culture period indicating a consistent metabolic behavior of the cells in the bioreactor. These results indicate the potential of the Cytopilot bioreactor culture system for the continuous production of a recombinant protein over several weeks.  相似文献   

18.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

19.
The chitinase A (ChiA)-coding gene of Pseudomonas sp. BK1, which was isolated from a marine red alga Porphyra dentata, was cloned and expressed in Escherichia coli. The structural gene consists of 1602 bp encoding a protein of 534 amino acids, with a predicted molecular weight of 55,370 Da. The deduced amino acid sequence of ChiA showed low identity (less than 32%) with other bacterial chitinases. The ChiA was composed of multiple domains, unlike the arrangement of domains in other bacterial chitinases. Recombinant ChiA overproduced as inclusion bodies was solubilized in the presence of 8 M urea, purified in a urea-denatured form and re-folded by removing urea. The purified enzyme showed maximum activity at pH 5.0 and 40 degrees C. It exhibited high activity towards glycol chitosan and glycol chitin, and lower activity towards colloidal chitin. The enzyme hydrolyzed the oligosaccharides from (GlcNAc)4 to (GlcNAc)6, but not GlcNAc to (GlcNAc)3. The results suggest that the ChiA is a novel enzyme, with different domain structure and action mode from bacterial family 18 chitinases.  相似文献   

20.
The thermophilic, xylanolytic, anaerobic organism, Dictyoglomus sp. B1, was cultivated in batch and continuous cultures in media containing insoluble beech-wood xylan. The extracellular xylanase activity levels obtained for the two cultivation methods were compared. Experiments were performed separately to determine the optimum substrate concentration, dilution rate, pH and temperature for xylanase production. Maximum xylanase activity was found at a substrate concentration of 1.5 g xylan/l, a dilution rate of 0.112 h–1, pH 8.0 and at 7°C. Different combinations of these optimum values were used in a 23 factorial experiment to investigate whether an increase in the xylanase production/activity could be achieved. A maximum xylanase activity of 2312 U/l was found when fermentors were operated at 73°C with a substrate concentration of 1.5 g xylan/l, pH 8.0, and a dilution rate of 0.112 h–1. Thus, the optimum xylanase activity in the factorial experiment was obtained when the conditions that gave the maximum xylanase activities in the individual experiments were combined. Optimum xylanase activity obtained in the 23 factorial experiment was 6.2 times higher than the activity found in the initial batch culture (373 U/l) and 3.0 times higher than the activity of a batch culture (783 U/l) grown at the same optimum conditions as the factorial experiment. The higher specific xylanase activity (217 U/mg protein) found in the 23 factorial experiment was 4.1 times higher than the specific activity in the initial batch culture (53 U/mg protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号