首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N(2)-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m(2)G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNA(Arg), tRNA(Phe), and tRNA(Val) yielded significantly more m(2)G than the bulk tRNA. The K(m) for tRNA(Arg) in the methylation reaction with enzymes from either tissue was 7.8 x 10(-7) M as compared to the value 1 x 10(-5) M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNA(Arg), tRNA(Phe), and tRNA(Val), A-m(2)G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5'-end contained in a sequence (s(4))U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

2.
3.
The mutant tRNA(2Arg) encoded by the genetically-selected frameshift suppressor, sufT621, inserts arginine and causes a +1 reading-frame shift at the proline codon, CCG(U). There is an extra base, G36.1, in argV beta, one of the four identical genes for tRNA(2Arg) in the position between bases 36 and 37, corresponding to the 3' side of the anticodon. The new four-base anticodon, predicted from DNA sequencing to be 3' GGCA 5', is complementary to the four-base codon CCGU. Quadruplet translocation promoted by mutant argV does not require perfect complementarity between the codon and the anticodon since synthetic genes encoding derivatives of tRNA(2Arg) and tRNA(1Pro), with four-base anticodons complementary to three out of the four bases of CCGU, were also shown to be capable of frameshifting. Two other mutants of argV, inferred to have normal-size, seven-base anticodon loops, were also found to be capable of four-base-decoding demonstrating that quadruplet translocation promoted by mutant argV does not require an enlarged anticodon loop. Other alleles of argV, predicted to have nine bases in the anticodon loop, were also found to cause frameshifting. The DNA sequence of two of these showed in addition, either a deletion of G24, or a ten-base duplication in the region corresponding to the TFC arm. A general finding is that mutations in the DHU arm of tRNA(2Arg) are compatible with, and in one case necessary for, frameshifting.  相似文献   

4.
5.
The specificity of transfer RNA aminoacylation by cognate aminoacyl-tRNA synthetase is a crucial step for synthesis of functional proteins. It is established that the aminoacylation identity of a single tRNA or of a family of tRNA isoacceptors is linked to the presence of positive signals (determinants) allowing recognition by cognate synthetases and negative signals (antideterminants) leading to rejection by the noncognate ones. The completion of identity sets was generally tested by transplantation of the corresponding nucleotides into one or several host tRNAs which acquire as a consequence the new aminoacylation specificities. Such transplantation experiments were also useful to detect peculiar structural refinements required for optimal expression of a given aminoacylation identity set within a host tRNA. This study explores expression of the defined yeast aspartate identity set into different tRNA scaffolds of a same specificity, namely the four yeast tRNA(Arg) isoacceptors. The goal was to investigate whether expression of the new identity is similar due to the unique specificity of the host tRNAs or whether it is differently expressed due to their peculiar sequences and structural features. In vitro transcribed native tRNA(Arg) isoacceptors and variants bearing the aspartate identity elements were prepared and their aminoacylation properties established. The four wild-type isoacceptors are active in arginylation with catalytic efficiencies in a 20-fold range and are inactive in aspartylation. While transplanted tRNA(1)(Arg) and tRNA(4)(Arg) are converted into highly efficient substrates for yeast aspartyl-tRNA synthetase, transplanted tRNA(2)(Arg) and tRNA(3)(Arg) remain poorly aspartylated. Search for antideterminants in these two tRNAs reveals idiosyncratic features. Conversion of the single base-pair C6-G67 into G6-C67, the pair present in tRNA(Asp), allows full expression of the aspartate identity in the transplanted tRNA(2)(Arg), but not in tRNA(3)(Arg). It is concluded that the different isoacceptor tRNAs protect themselves from misaminoacylation by idiosyncratic pathways of antidetermination.  相似文献   

6.
Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings.  相似文献   

7.
Wang X  Yan Q  Guan MX 《FEBS letters》2007,581(22):4228-4234
We report here the characterization of the yeast mto2 null mutants carrying wild-type mitochondrial DNA or 15S rRNA C1049G allele. The amounts of mitochondrial tRNA(Lys), tRNA(Glu), tRNA(Gln), tRNA(Leu), tRNA(Gly) and tRNA(Met) were markedly decreased but those of tRNA(Arg) and tRNA(His) were not affected in mto2 strains. The mto2 strains exhibited significant reduction in the aminoacylation of tRNA(Lys), tRNA(Leu) but almost no effect in those of tRNA(His). Interestingly, the strain carrying the C1049G allele exhibited an impairment of aminoacylation of those tRNAs. Furthermore, the steady-state levels of mitochondrial mRNA CYTB, COX1, COX2, COX3, and ATP6 were markedly decreased in mto2 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO2 caused the instability of mitochondrial tRNAs and mRNAs and impairment of aminoacylation of tRNAs.  相似文献   

8.
9.
1-Methylguanosine (m1G) is present next to the 3' end of the anticodon (position 37) in tRNA(1,2,3,Leu), tRNA(1,2,3,Pro), and tRNA(3Arg). A mutant of Salmonella typhimurium lacks m1G in these seven tRNAs when grown at or above 37 degrees C, as a result of a mutation (trmD3) in the structural gene (trmD) for the tRNA(m1G37)methyltransferase. The m1G deficiency induced 24 and 26% reductions in the growth rate and polypeptide chain elongation rate, respectively, in morpholinepropanesulfonic acid (MOPS)-glucose minimal medium at 37 degrees C. The expression of the leuABCD operon is controlled by the rate with which tRNA(2Leu) and tRNA(3Leu) read four leucine codons in the leu-leader mRNA. Lack of m1G in these tRNAs did not influence the expression of this operon, suggesting that m1G did not influence the efficiency of tRNA(2,3Leu). Since the average step time of the m1G-deficient tRNAs was increased 3.3-fold, the results suggest that the impact of m1G in decoding cognate codons may be tRNA dependent. The trmD3 mutation rendered the cell more resistant or sensitive to several amino acid analogs. 3-Nitro-L-tyrosine (NT), to which the trmD3 mutant is sensitive, was shown to be transported by the tryptophan-specific permease, and mutations in this gene (mtr) render the cell resistant to NT. Since the trmD3 mutation did not affect the activity of the permease, some internal metabolic step(s), but not the uptake of the analog per se, is affected. We suggest that the trmD3-mediated NT sensitivity is by an abnormal translation of some mRNA(s) whose product(s) is involved in the metabolic reactions affected by the analog. Our results also suggest that tRNA modification may be a regulatory device for gene expression.  相似文献   

10.
11.
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can be converted to an RNA cutter that recognizes four bases, with about a 65-nt 3'-truncated tRNA(Arg) or tRNA(Ala). The 3'-truncated tRNA recognizes the target RNA via four base pairings between the 5'terminal sequence and a sequence 1-nt upstream of the cleavage site, resulting in a pre-tRNA-like complex (Nashimoto M, 1995, Nucleic Acids Res 23:3642-3647). Here I developed a general method for more specific RNA cleavage using 3' tRNase. In the presence of a 36-nt 5' half tRNA(Arg) truncated after the anticodon, 3' tRNase cleaved the remaining 56-nt 3' half tRNA(Arg) with a 19-nt 3' trailer after the discriminator. This enzyme also cleaved its derivatives with a 5' extra sequence or nucleotide changes or deletions in the T stem-loop and extra loop regions, although the cleavage efficiency decreases as the degree of structural change increases. This suggests that any target RNA can be cleaved site-specifically by 3'tRNase in the presence of a 5' half tRNA modified to form a pre-tRNA-like complex with the target. Using this method, two partial HIV-1 RNA targets were cleaved site-specifically in vitro. These results also indicate that the sequence and structure of the T stem-loop domain are important, but not essential, for the recognition of pre-tRNAs by 3' tRNase.  相似文献   

12.
The effect of N-[9-(beta-D-ribofuranosyl) purin-6-ylcarbamoyl]threonine (t6A) adjacent to anticodon U-C-U of yeast tRNA Arg III (where U is a modified U), compared to its unmodified adenosine counterpart, has been evaluated by three independent methods: (a) the polynucleotide-directed binding of tRNA on ribosomes, (b) the ribosome-free trinucleotide binding to the anticodon, (c) the anticodon-anticodon binding test. The results obtained by these three methods indicate a small but significant stabilization effect of t6A on the binding of yeast tRNA Arg III with (a) poly(A,G) in the presence of Escherichia coli ribosomes, (b) free A-G-A triplet, and (c) E. coli tRNA Ser V (anticodon G-G-A). We therefore conclude that the stabilization effect of t6A occurs on U x A and U x G base pairs adjacent to the 5' side of the modified nucleoside, most probably by stacking.  相似文献   

13.
In vivo misreading by tRNA overdose   总被引:1,自引:0,他引:1       下载免费PDF全文
Rpb5-H147R is an AT-GC transition replacing CAC(His) by CGC(Arg) at a conserved and critical position of ABC27 (Rpb5p), one of the five common and essential subunits shared by all three eukaryotic RNA polymerases. This mutation is viable at 25 degrees C, but has a lethal phenotype at 34 degrees C. A search for dosage-dependent suppressors identified five distinct clones that all bear a copy of the tRNA(His)GUG gene. Suppression was also observed with a small genomic insert bearing this tRNA gene and no other coding sequences, under conditions where there is a sevenfold increase in the cellular concentration of tRNA(His)GUG. Overexpressing tRNA(Arg)ICG, which normally decodes the suppressed CGC codon, counteracted suppression. Suppression is codon specific because it was abolished when replacing CGC by its synonymous codons CGA, CGU, or AGA, but was not detectably affected by several nucleotide substitutions modifying the surrounding sequence and is thus largely insensitive to the nucleotide context. It is proposed that overexpressing tRNA(His)GUG extends its decoding properties from CAC(His) to the noncognate CGC(Arg) codon through an illegitimate U x G pairing at the middle base of the anticodon. Accordingly, tRNA(His)GUG would compete with tRNA(Arg)ICG for chain elongation and generate a significant level of misreading errors under normal growth conditions.  相似文献   

14.
15.
In cell-free protein-synthesizing systems containing an S30 extract from liver and brain cortex tissues of 22-day-old fetuses and of male WAG rats (1-900 days old), the minimal rate of protein synthesis was observed in the fetuses, while the maximal one - in 7-day-old animals. The difference in the rates of protein synthesis correlated with the minimal concentration of total tRNA in the former group and with its maximal concentration in the latter. In fetal tissues, an addition to cell-free systems of total tRNA isolated from homologous tissues of 7-day-old animals augmented protein synthesis up to a level observed in 7-day-old animals, whereas in the tissues of animals belonging to other age groups total tRNA had a far less pronounced stimulating effect which decreased with age. Fractionation of total tRNA and analysis of effects of individual tRNAs on protein synthesis demonstrated that the stimulating influence was induced by tRNA(2Arg), tRNA(4Arg) and tRNA(2Val) from brain cortex and by tRNA(2Leu), tRNA(5Leu), tRNA(2Val), tRNA(1Met) and tRNA(2Met) from liver.  相似文献   

16.
Aminoacylation of a transfer RNA (tRNA) by its cognate aminoacyl-tRNA synthetase relies upon the recognition of specific nucleotides as well as conformational features within the tRNA by the synthetase. In Escherichia coli, the aminoacylation of tRNA(His) by histidyl-tRNA synthetase (HisRS) is highly dependent upon the recognition of the unique G-1:C73 base pair and the 5'-monophosphate. This work investigates the RNA-protein interactions between the HisRS active site and these critical recognition elements. A homology model of the tRNA(His)-HisRS complex was generated and used to design site-specific mutants of possible G-1:C73 contacts. Aminoacylation assays were performed with these HisRS mutants and N-1:C73 tRNA(His) and microhelix(His) variants. Complete suppression of the negative effect of 5'-phosphate deletion by R123A HisRS, as well as the increased discrimination of Q118E HisRS against a 5'-triphosphate, suggests a possible interaction between the 5'-phosphate and active-site residues Arg123 and Gln118 in which these residues create a sterically and electrostatically favorable pocket for the binding of the negatively charged phosphate group. Additionally, a network of interactions appears likely between G-1 and Arg116, Arg123, and Gln118 because mutation of these residues significantly reduced the sensitivity of HisRS to changes at G-1. Our studies also support an interaction previously proposed between Gln118 and C73. Defining the RNA-protein interactions critical for efficient aminoacylation by E. coli HisRS helps to further characterize the active site of this enzyme and improves our understanding of how the unique identity elements in the acceptor stem of tRNA(His) confer specificity.  相似文献   

17.
18.
The discovery of separate 5' and 3' halves of transfer RNA (tRNA) molecules-so-called split tRNA-in the archaeal parasite Nanoarchaeum equitans made us wonder whether ancestral tRNA was encoded on 1 or 2 genes. We performed a comprehensive phylogenetic analysis of tRNAs in 45 archaeal species to explore the relationship between the three types of tRNAs (nonintronic, intronic and split). We classified 1953 mature tRNA sequences into 22 clusters. All split tRNAs have shown phylogenetic relationships with other tRNAs possessing the same anticodon. We also mimicked split tRNA by artificially separating the tRNA sequences of 7 primitive archaeal species at the anticodon and analyzed the sequence similarity and diversity of the 5' and 3' tRNA halves. Network analysis revealed specific characteristics of and topological differences between the 5' and 3' tRNA halves: the 5' half sequences were categorized into 6 distinct groups with a sequence similarity of >80%, while the 3' half sequences were categorized into 9 groups with a higher sequence similarity of >88%, suggesting different evolutionary backgrounds of the 2 halves. Furthermore, the combinations of 5' and 3' halves corresponded with the variation of amino acids in the codon table. We found not only universally conserved combinations of 5'-3' tRNA halves in tRNA(iMet), tRNA(Thr), tRNA(Ile), tRNA(Gly), tRNA(Gln), tRNA(Glu), tRNA(Asp), tRNA(Lys), tRNA(Arg) and tRNA(Leu) but also phylum-specific combinations in tRNA(Pro), tRNA(Ala), and tRNA(Trp). Our results support the idea that tRNA emerged through the combination of separate genes and explain the sequence diversity that arose during archaeal tRNA evolution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号